
Safety: off
How not to shoot yourself in the foot with C++

atomics

Anthony Williams

Just Software Solutions Ltd
http://www.justsoftwaresolutions.co.uk

9th June 2016

http://www.justsoftwaresolutions.co.uk

Safety: off
How not to shoot yourself in the foot with C++ atomics

Safety: off
How not to shoot yourself in the foot with C++ atomics

C++ Atomic types and operations
Worked examples
Guidelines

Aside: Profiling

We use atomic operations rather than locks to
improve performance.
We therefore need to specify the aspect we
care about:

Throughput
Latency
Something else

It is vital to profile before and after
changing to atomic operations

Atomic types

Atomic types

std::atomic<T> provides an atomic type that can store
objects of type T.

T can be a built in type, or a class type of any size
T must be trivially copyable
compare_exchange_xxx operations require that you can
compare T objects with memcmp
std::atomic<T> may not be lock free — especially for
large types

std::atomic_flag provides a guaranteed-lock-free flag
type.
The Concurrency TS provides atomic_shared_ptr and
atomic_weak_ptr.

atomic
Adjective
Meaning

Of or forming a single irreducible unit or
component in a larger system.

Origin
Late 15th century: from Old French atome,
via Latin from Greek atomos ‘indivisible’,
based on a- ‘not’ + temnein ‘to cut’

Atomic Operations

General ops
load(), store(), exchange(),
compare_exchange_weak(),
compare_exchange_strong()
=

Arithmetic ops for atomic<Integral> and atomic<T*>
fetch_add(), fetch_sub()
++, --, +=, -=

Bitwise ops for atomic<Integral>
fetch_and(), fetch_or(), fetch_xor()
&=, |=, ^=

Flag ops for atomic_flag
test_and_set(), clear()

MAY NOT BE LOCK FREE

GUARANTEED LOCK FREE

Atomic Operations

General ops
load(), store(), exchange(),
compare_exchange_weak(),
compare_exchange_strong()
=

Arithmetic ops for atomic<Integral> and atomic<T*>
fetch_add(), fetch_sub()
++, --, +=, -=

Bitwise ops for atomic<Integral>
fetch_and(), fetch_or(), fetch_xor()
&=, |=, ^=

Flag ops for atomic_flag
test_and_set(), clear()

MAY NOT BE LOCK FREE

GUARANTEED LOCK FREE

Memory Ordering Constraints

6 values for the ordering on an operation:

memory_order_seq_cst (the default)
memory_order_acquire

memory_order_release

memory_order_acq_rel (RMW ops only)
memory_order_relaxed (Experts only)
memory_order_consume (Optimized form of memory_order_acquire, for special circumstances, for
experts only)

memory_order_seq_cst ordering

All memory_order_seq_cst operations to all variables form a
single total order.

I n i t i a l l y x=0 , y=0

S t o r e x = 1 S t o r e y = 1

L o a d x = = 1

L o a d y = = 1

S C

S C S C

L o a d y = = 1

L o a d x = = 0

S C

S CS C

Release/acquire synchronization

A memory_order_release operation synchronizes with a
memory_order_acquire operation that reads the value
written.

Release/acquire non-synchronization

Unrelated reads do not synchronize.

Relaxed atomics: anything can happen

Relaxed atomics can read out of order.

Fences

Fences

C++ has two kinds of fences:
std::atomic_thread_fence
⇒ Used for synchronizing between threads
std::atomic_signal_fence
⇒ Used for synchronizing between a thread and a signal
handler in that thread

Fences

Fences in C++ effectively modify the ordering constraints on
neighbouring atomic operations rather than providing any direct
ordering constraints themselves.

x.load(memory_order_relaxed);
atomic_thread_fence(memory_order_acquire);

⇒ x.load(memory_order_acquire);

atomic_thread_fence(memory_order_release);
x.store(memory_order_relaxed);

⇒ x.store(memory_order_release);

Fences

memory_order_acq_rel fences behave as both
memory_order_acquire and memory_order_release
fences.

memory_order_seq_cst fences are special: they form part
of the total order of memory_order_seq_cst operations, and
can therefore enforce orderings beyond the direct pairwise
acquire-release orderings. If you’re relying on this, you’ve
probably done something wrong.

Lock-free examples

Lock-free terminology

Obstruction free (Weakest guarantee)
If all other threads are paused then any given
thread will complete its operation in a bounded
number of steps.

Lock free (Most common guarantee)
If multiple threads are operating on a data
structure then after a bounded number of steps
one of them will complete its operation.

Wait free (Strongest guarantee)
Every thread operating on a data structure will
complete its operation in a bounded number of
steps, even if other threads are also operating on
the data structure.

Queues

Why Queues?

Core facility for communication between
threads
Many types of queue:

SPSC / MPSC / MPMC / SPMC
bounded / unbounded
FIFO / priority / unordered
intrusive / non-intrusive

Good for demonstrating issues

Lock-based queue

Lock-based, unbounded, MPMC, FIFO queue

template<typename T>
class queue1{

private:
std::mutex m;
std::condition_variable c;
std::queue<T> q;

};

Push

void push_back(T t){
{
std::lock_guard<std::mutex> guard(m);
q.push(t);

}
c.notify_one();

}

Pop

T pop_front(){
std::unique_lock<std::mutex> guard(m);
c.wait(guard,[=]{return !q.empty();});
auto ret=q.front();
q.pop();
return ret;

}

Lock-free SPSC FIFO queue

Let’s start simple with our lock-free queue:

One producer thread
One consumer thread
Bounded, so no memory allocation
Assume T has a noexcept copy constructor

Lock-free SPSC FIFO queue: bounded buffer

template<typename T,unsigned buffer_size=42>
class queue2{

typedef typename std::aligned_storage<
sizeof(T),alignof(T)>::type storage_type;

struct entry{
std::atomic<bool> initialized{false};
storage_type storage;

};
entry buffer[buffer_size];

};

Lock-free SPSC FIFO queue: pushing

template<typename T,unsigned buffer_size=42>
class queue2{

unsigned push_pos{0};

public:
void push_back(T t){
unsigned my_pos=push_pos;
auto& my_entry=buffer[my_pos];
if(my_entry.initialized.load())
throw std::runtime_error("Full");

push_pos=(my_pos+1)%buffer_size;
new(&my_entry.storage) T(t);
my_entry.initialized.store(true);

}

};

Aside: avoid busy waits

Busy waits are to be avoided: they consume processor power
for no purpose.

It is acceptable for a compare_exchange_weak loop to have
no body: we’re hoping to avoid spinning more than a couple of
times.

If you need to wait, use a proper wait mechanism such as
std::condition_variable.

Lock-free SPSC FIFO queue: popping

unsigned pop_pos{0};

public:

T pop_front(){
if(!buffer[pop_pos].initialized.load())
throw std::runtime_error("empty");

auto ptr=static_cast<T*>(
static_cast<void*>(&buffer[pop_pos].storage));

auto ret=*ptr;
ptr->~T();
buffer[pop_pos].initialized.store(false);
pop_pos=(pop_pos+1)%buffer_size;
return ret;

}

Broken Lock-free MPSC FIFO queue

Now let’s try and make an MPSC FIFO based on queue2.
A naive attempt would be to make push_pos atomic:

std::atomic<unsigned> push_pos{0};

void push_back(T t){
unsigned my_pos=push_pos.load();
while(!push_pos.compare_exchange_weak(

my_pos,(my_pos+1)%buffer_size)){}

This is still broken.

Broken Lock-free MPSC FIFO queue

Now let’s try and make an MPSC FIFO based on queue2.
A naive attempt would be to make push_pos atomic:

std::atomic<unsigned> push_pos{0};

void push_back(T t){
unsigned my_pos=push_pos.load();
while(!push_pos.compare_exchange_weak(

my_pos,(my_pos+1)%buffer_size)){}

This is still broken.

Broken Lock-free MPSC FIFO queue

1 Queue is empty, push_pos is 0.
2 Thread 1 calls push_back, gets my_pos is 0, and

increments push_pos to 1.
3 Thread 1 checks the cell is empty.
4 Thread 1 gets suspended by scheduler
5 Thread 2 calls push_back buffer_size-1 times, so

push_pos loops round to 0.
6 Thread 2 calls push_back again. Thread 2 gets my_pos

of 0, and sets push_pos to 1.
7 Thread 2 checks that the cell is empty.
8 Thread 2 populates the cell.
9 Thread 1 is woken by the scheduler.

10 Thread 1 populates the cell. DATA RACE.

Not-lock-free MPSC queue

The problem on the previous slide only occurs if the buffer is
full. Can we prevent this by checking for a full buffer?

std::atomic<unsigned> size{0};

void push_back(T t){
unsigned old_size=size.load();
for(;;){
if(old_size==buffer_size)
old_size=size.load();

else if(size.compare_exchange_weak(
old_size,old_size+1))

break;
}

Not-lock-free MPSC queue

Our queue is now not even obstruction free.

1 Queue is empty. push_pos is 0. pop_pos is 0.
2 Thread 1 calls push_back and increases size.
3 Thread 1 gets my_pos as 0, increments push_pos
4 Thread 1 is suspended by scheduler.
5 Thread 2 pushes buffer_size-1 entries.
6 Thread 2 tries to push another entry, but

size==buffer_size
7 Thread 3 calls pop_front, but pop_pos is 0 and the

entry at 0 hasn’t been filled in.
8 All threads now stalled waiting for thread 1.

Fixing queue4

Can we fix this? First we need to identify the problem.

Pushing a value consists of 3 steps:

1 Find a free slot in the buffer
2 Construct the pushed value in the slot
3 Mark the value as available to the consuming thread

We need to publish in step 3, rather than step 1.

Fixing queue4

Can we fix this? First we need to identify the problem.

Pushing a value consists of 3 steps:

1 Find a free slot in the buffer
2 Construct the pushed value in the slot
3 Mark the value as available to the consuming thread

We need to publish in step 3, rather than step 1.

Fixing queue4

We need to separate the buffer ordering from the queue
ordering, so we need to redo steps 1 and 3.

1 Hunt the buffer for a free slot
2 Construct the pushed value in the slot
3 Link that entry into the queue

Fixing queue4: Linking entries into the queue

Let’s use a linked list — that’s easy, isn’t it? Just push entries
on the tail, and pop them off the head.

We still have two locations to update: the next pointer in the
previous node, and the tail pointer.

Having the push thread do them in either order can lead to a
race.

Fixing queue4: Linking entries into the queue

Answer: update the next pointers from the (one and only) pop
thread.

In push_back we record the previous tail entry:

void push_back(T t){
auto my_entry=allocate_entry();
new(&my_entry->storage) T(t);
my_entry->next=nullptr;
my_entry->prev=tail.load();
while(!tail.compare_exchange_weak(

my_entry->prev,my_entry)){}
}

Fixing queue4: Linking entries into the queue

In pop_front, if there is no next value for the current entry
we can start at the tail and fill them all in:

T pop_front(){
entry* old_head=head;
while(!old_head)
old_head=chase_tail();

head=old_head->next;
auto ptr=static_cast<T*>(
static_cast<void*>(&old_head->storage));

auto ret=*ptr;
ptr->~T();
recycle_node(old_head);
return ret;

}
~queue5(){

Fixing queue4: Linking entries into the queue

entry* chase_tail(){
entry* next=tail.exchange(nullptr);
if(!next)
return nullptr;

while(next->prev){
next->prev->next=next;
next=next->prev;

}
return next;

}

A lock-free? MPSC FIFO queue

Our queue is now obstruction free, but is it lock-free or
wait-free?

If the queue is full then we have to wait.
⇒ Use a lock-free allocator instead of a fixed buffer.
If the queue is empty then we have to wait.
Otherwise, only waiting is in compare-exchange loops
⇒ No upper limit on loops, so cannot be wait-free.
compare_exchange_weak can fail spuriously
⇒ If it does then there is no bound to the number of steps.

Lock-free vs obstruction-free strictly depends on the
compare_exchange_weak implementation.

Performance: Cache Ping-Pong

Performance: Cache Ping-Pong

Cache Ping-Pong is where a cacheline is continuously
shuttled back and forth between two processors. This occurs
when two threads are accessing either:

the same atomic variable
different variables on the same cache line

This can have a big performance impact, because transferring
cache lines is slow.

Cache Ping-Pong in queue5

queue5 can be accessed by many threads in push_back, and
one more thread in pop_front simultaneously.

std::atomic<unsigned> push_hint{0};
entry* head{nullptr};
std::atomic<entry*> tail{nullptr};
entry buffer[buffer_size];

head and tail are adjacent, but accessed by different threads
⇒ unnecessary cache ping-pong.
There are many examples in this data structure.

Cache Ping-Pong avoidance in queue5

The solution to cache ping-pong is to put data on different
cache lines by adding padding. This trades memory space
for performance.

std::atomic<unsigned> push_hint{0};
char padding1[padding_size];
entry* head{nullptr};
char padding2[padding_size];
std::atomic<entry*> tail{nullptr};
char padding3[padding_size];
entry buffer[buffer_size];

Cache Ping-Pong avoidance in queue5

Times for 10,000,000 pushes of an integer on each of 3
threads, with another thread popping all 30,000,000 entries.

Run No padding With padding With Lock
1 26.4s 11.4s 27.1s
2 22.4s 9.8s 17.8s
3 22.1s 15.4s 25.4s
4 14.3s 9.0s 24.3s

Mean 21.3s 11.4s 23.7s

Performance: Memory Ordering Constraints

All the examples so far have used the default ordering
constraint: memory_order_seq_cst.

You should use memory_order_seq_cst unless you have
a strong reason not to.

Performance: Memory Ordering Constraints

For x86, only store is affected by the memory order, but for
architectures like POWER and ARM with weaker default
synchronization, all operations can be affected.

You must test on a weakly-ordered system like POWER or
ARM if you’re using anything other than
memory_order_seq_cst.

Stacks

Stacks

A stack is a simpler data structure than a queue. It’s great for
examples, but bad for real use, as all threads are contending to
access the top-of-stack.

I’m going to use it to demonstrate a specific problem: the
A-B-A problem.

A simple MPSC stack: pushing

template<typename T>
class stack1{
struct node{
T val;
node* next;

};
std::atomic<node*> head{nullptr};

public:
void push(T newval){
auto newnode=new node{newval,head.load()};
while(!head.compare_exchange_weak(

newnode->next,newnode)){}
}

A simple MPSC stack: popping

T pop(){
auto old_head=head.load();
for(;;){
if(!old_head)
old_head=head.load();

else if(head.compare_exchange_strong(
old_head,old_head->next)){

auto res=old_head->val;
delete old_head;
return res;

}
}

}

A simple stack: A-B-A issues

Why is this a single-consumer stack?
Answer: the A-B-A problem.

A simple stack: A-B-A issues

1 Thread 1 calls pop()
2 Thread 1 reads head into old_head

(A)
3 Thread 1 reads old_head->next
4 Thread 1 is suspended
5 Thread 2 pops two items, head has

new value (B)
6 Thread 2 pushes two items
7 Second new item is given address

of old item, head has original value
(A)

8 Thread 1 resumes and calls
compare_exchange_strong,
which succeeds because the
address is the same

9 Stack is now corrupt

A-B-A

The setup:

1 A value changes from A to B and back to A,
2 Other aspects of the data structure have changed, and
3 A thread makes a change based on the first time the value

was A that is inconsistent with the new state of the data
structure.

This most commonly happens where the value is a pointer.

A-B-A: Solutions

Do not allow a variable to return to its previous value while a
thread can do something based on the old value.

Use a change count as part of the variable:

struct Value{ T* ptr; unsigned count;};
std::atomic<Value> v;

Ensure that objects are not recycled when still accessible,
so A-B-A never happens.
⇒ Reference count the objects, e.g. with
std::shared_ptr and atomic_shared_ptr or use
hazard pointers, or something similar.

Guidelines

Guidelines

Don’t use atomics unless you have to
Profile before and after
Test on a weakly-ordered architecture such as POWER or
ARM
Don’t use atomics unless you really have to

Guidelines

Think in transactions
Do work off to the side and commit with a single
atomic operation.

Split big operations
If the operation is too big to do in one step, split it
into smaller steps that retain the data structure
invariants.

Limit use cases
Restrict the permitted concurrency levels where
possible to reduce implementation complexity.

Watch out for ABA problems
These require the circumstances to align just so,
but will destroy your data structure when they
happen. They can be easily missed in testing.

Guidelines

Avoid cache ping pong
Add padding between variables that are accessed
from different threads. Try and avoid too many
threads accessing the same variable.

Stick to memory_order_seq_cst
Unless you really know what you’re doing, and
really need the performance gain, stick to the
default memory_order_seq_cst. Anything else
can be a nightmare to prove correct.

Package things up
Wrap atomic operations with types that only
expose the desired functionality, to clarify the user
code and hide the complexity.

Guidelines

Aim for lock-free
Aim for your code to be at least obstruction-free,
and preferably lock-free. Leave wait-free for those
rare circumstances where you need it.

Avoid busy waits
If you’re actually waiting (as opposed to spinning
on a compare_exchange_weak operation), use
a proper wait mechanism.

Questions?

Just::Thread

just::thread provides a complete implementation of the
C++14 thread library for MSVC and g++ on Windows, and g++
for Linux and MacOSX.
Just::Thread Pro gives you actors, concurrent hash maps,
concurrent queues and synchronized values.

My Book

C++ Concurrency in Action:
Practical Multithreading
http://stdthread.com/book

http://stdthread.com/book

Picture credits

The images listed below are from the specified source, with the specified license. All other images are copyright Just Software Solutions
Ltd, licensed under Creative Commons Attribution ShareAlike 4 https://creativecommons.org/licenses/by-sa/4.0/.

Safety Switch: https://www.flickr.com/photos/jamescridland/6163838972/ by James Cridland, Creative
Commons Attribution
Stop watch: https://www.flickr.com/photos/o5com/5488964999/ by o5com, Creative Commons Attribution-NoDerivs
Lithium Atom: https://commons.wikimedia.org/wiki/File:Stylised_Lithium_Atom.svg by Indolences and Rainer
Klute, Creative Commons Attribution-ShareAlike
Fence: http://www.public-domain-image.com/full-image/
nature-landscapes-public-domain-images-pictures/sunshine-public-domain-images-pictures/
sunlight-over-picket-fence.jpg-royalty-free-stock-photograph.html by Leon Brooks, Public Domain
Lock image: http://pixabay.com/en/lock-closed-shut-keyhole-306311/ by Nemo, Public Domain
“Unauthorised” overlay: http://pixabay.com/en/unauthorised-denied-ban-prohibition-156169/ by OpenClips,
Public Domain
Queue for Apple Store: http://www.geograph.org.uk/photo/3143246 by Robin Stott, Creative Commons
Ping Pong Set: https://commons.wikimedia.org/wiki/File:Ping-Pong_2.jpg by Daniel Schwen, Creative
Commons Attribution-ShareAlike
Stack of presents:
http://christmasstockimages.com/free/ideas_concepts/slides/christmas_gift_stack.htm by
christmasstockimages.com, Creative Commons Attribution
Abacus: https://commons.wikimedia.org/wiki/File:Abacus_6.jpg by Loadmaster (David R. Tribble), Creative
Commons Attribution ShareAlike
Success sign: https://commons.wikimedia.org/wiki/File:Success_sign.jpg by Keith Ramsey
(RambergMediaImages), Creative Commons Attribution ShareAlike

https://creativecommons.org/licenses/by-sa/4.0/
https://www.flickr.com/photos/jamescridland/6163838972/
https://www.flickr.com/photos/o5com/5488964999/
https://commons.wikimedia.org/wiki/File:Stylised_Lithium_Atom.svg
http://www.public-domain-image.com/full-image/nature-landscapes-public-domain-images-pictures/sunshine-public-domain-images-pictures/sunlight-over-picket-fence.jpg-royalty-free-stock-photograph.html
http://www.public-domain-image.com/full-image/nature-landscapes-public-domain-images-pictures/sunshine-public-domain-images-pictures/sunlight-over-picket-fence.jpg-royalty-free-stock-photograph.html
http://www.public-domain-image.com/full-image/nature-landscapes-public-domain-images-pictures/sunshine-public-domain-images-pictures/sunlight-over-picket-fence.jpg-royalty-free-stock-photograph.html
http://pixabay.com/en/lock-closed-shut-keyhole-306311/
http://pixabay.com/en/unauthorised-denied-ban-prohibition-156169/
http://www.geograph.org.uk/photo/3143246
https://commons.wikimedia.org/wiki/File:Ping-Pong_2.jpg
http://christmasstockimages.com/free/ideas_concepts/slides/christmas_gift_stack.htm
https://commons.wikimedia.org/wiki/File:Abacus_6.jpg
https://commons.wikimedia.org/wiki/File:Success_sign.jpg

