Dataflow, actors and high level structures in

concurrent applications

Anthony Williams

Just Software Solutions Ltd
http://www. justsoftwaresolutions.co.uk

26th April 2012

http://www.justsoftwaresolutions.co.uk

Aims of High Level Approaches

Make it easier to write applications
that ...

» Scale with hardware

» Are obviously correct rather
than having no obvious
problems — C.A.R. Hoare

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Aspects of Application Design

4 Aspects:
o Tasks
» Communication
» State
» Concurrency

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

High Level Approaches

» Actors

o Active Objects

» Dataflow

» Loop Parallelism

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

High Level Approaches

» Actors

o Active Objects

» Dataflow

» Loop Parallelism

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Actors

7 do st?ff

..... receive message
flob widgets

}end message

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Actors in Erlang

» Process = Actor
» Messages are a language feature
» Guaranteed isolation

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

-export ([ping/2, pong/0]).

ping(0, Pong_PID) ->
Pong_PID ! finished,
io:format("ping finished™n", [1);

ping(N, Pong_PID) ->
Pong_PID ! {ping, self()},
receive
pong ->
io:format("Ping received pong™n", [J)
end,
ping(N - 1, Pong_PID).

pong() ->
receive
finished ->
io:format("Pong finished™n", [1);
{ping, Ping_PID} ->
io:format ("Pong received ping™n", []1),
Ping_PID ! pong,
pong ()
end.

main(_) ->
Pong_PID = spawn(?MODULE, pong, [1),
spawn (?MODULE, ping, [5, Pong_PID]),
timer:sleep(1000) .

-export ([source/2, target/0]).

source(0, Target_PID) ->
Target_PID ! finished,

io:format ("source finished™n",

source(N, Target_PID) ->
io:format("source sending
Target_PID ! {message,N},

source(N - 1, Target_PID).

dump_messages () ->
receive
{message ,N} ->
io:format("Target
dump_messages ()
end.

target () ->
receive
finished ->
io:format ("Target
dump_messages ()
end.

main(_) ->

Target_PID = spawn(?MODULE, target,
spawn (?MODULE, source, [5,

timer:sleep(1000) .

m;

NI,

message “w'n",

received message “w'n",

m,

finished™n",

m,
Target_PID]),

N,

target () ->
receive
finished ->
io:format("Target finished™n", []),
dump_messages () ;
_ >
io:format ("Unexpected message™n", []1),
target ()

end.

Dynamic actors

Actors can be started dynamically
=> can add new actors in response
to messages

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

chain_sieve (My_prime,Next_sieve) ->

receive

N -> if (N rem My_prime) == 0 -> true;
true ->
Next_sieve ! N
end
end,
chain_sieve(My_prime,Next_sieve).

sieve(My_prime) ->
io:format("“w™n", [My_prime]),
receive
N >
if (N rem My_prime) == 0 ->
sieve(My_prime) ;
true ->
Next_sieve = spawn(?MODULE,sieve, [N]),
chain_sieve(My_prime,Next_sieve)
end
end.

Actors in C++

o Actor =~ Thread
o Actors are a library facility
o Isolation by programmer discipline

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

struct ping { jss::actor_ref sender; };
struct pong {};
struct finished {};

void pingfunc(unsigned n,jss::actor_ref pong_id){
while(n--) {
pong_id << ping{jss::actor::self()};
jss::actor::receive() .match<pong>(
[] (pong){
std: :cout<<"ping received pong\n";
3
}
pong_id << finished();
std::cout<<"ping finished\n";

void pongfunc() {
bool done=false;
while(!done) {
jss::actor::receive()
.match<ping>(
(] (ping p){
std: :cout<<"pong received ping\n";
p.sender << pong();
D
.match<finished>(
[&] (finished){
std: :cout<<"pong finished\n";
done=true;

1)

Actors in Scala

o Actors may share threads
o Actors are a library facility
o Isolation by programmer discipline

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

case object Ping
case object Pong
case object Finished

class Ping(count: Int, pong: Actor) extends Actor {
def act() {
var pingslLeft = count
while(pingsLeft > 0) {
pong ! Ping
receive {
case Pong =>
Console.println("Ping received pong")
3
pingslLeft -= 1
b
Console.println("Ping finished")
pong ! Finished

class Pong extends Actor {
def act() {
loop {
react {
case Ping =>
Console.println("Pong received ping ")
sender ! Pong
case Finished =>
Console.println("Pong finished")
exit ()

Actors as state machines

Anthony Williams Just Software Solutions Ltd htt stsoftwaresolution

Dataflow, actors i rrent applicatio

http://www.justsoftwaresolutions.co.uk

Actors as state machines (I)

Anthony Williams

Dataflow, actors

<Start>

Print / Pong

Finished

Print

Just Software Solutions Ltd htt

rrent applicatiof

stsoftwaresolution;

http://www.justsoftwaresolutions.co.uk

Actors as state machines (II)

O <Start> @ Pong @ Pong
Ping Print / Ping Print / Ping

: Pong :1 Pong @ Pong
Print/Finished Print / Ping Print / Ping

Anthony Williams

Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors a igh level structures in concurrent app

http://www.justsoftwaresolutions.co.uk

Actors as state machines (I11)

Digit pressed (final digit)

Digit pressed

iti Card inserte i T
Initial d} Getting Clear last digit Verifying
state PIN PIN

pressed

1 Cancel

Card taken
PIN OK
pressed PIN not OK
Cancel pressed W?:(‘j“g for|
< withdrawal
o amount
<— Insufficient funds

Withdraw (amount) pressed

Withdrawal OK Waiting for
(issue cash) confirmation

Anthony Williams Just Software Solutions Ltd htt stsoftwaresolutions.co.uk

Dataflow, actors a i i rrent applicat

http://www.justsoftwaresolutions.co.uk

class atm {
actor_ref bank;
actor_ref interface_hardware;
void (atm::*state) ();

std::string account;
unsigned withdrawal_amount;
std::string pin;

public:

void operator() () {
state=&atm: :waiting_for_card;
for(;;) {
(this->*state) ();
b
}
s

void wait_for_action() {
interface_hardware<<display_withdrawal_options();
actor::receive()
.match<withdraw_pressed>(

[&] (withdraw_pressed const& msg) {
withdrawal _amount=msg.amount;
bank<<withdraw{account,msg.amount,actor: :self()};
state=&atm: :process_withdrawal;

b

.match<balance_pressed>(

[&] (balance_pressed const&) {
bank<<get_balance{account,actor::self()};
state=&atm: :process_balance;

D

.match<cancel_pressed>(

[&] (cancel_pressed const&) {

state=&atm: :done_processing;

1)

Actors: Summary

Tasks Master function,
message handlers

Communication Message queues

State Actor's internal
state

Concurrency Limited to number
of actors

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

High Level Approaches

» Actors

» Active Objects
» Dataflow

» Loop Parallelism

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Active Objects

o Special sort of actor
» Send messages by method calls
o Results returned in a future

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Active Objects in Groovy

» Annotate the class with
@Activelbject

» Annotate the method with
@ActiveMethod

o The return type is
DataflowVariable

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Q@Activelbject
class DeepThought {
Q@ActiveMethod
def findTheAnswerToLifeTheUniverseAndEverything() {
println "Thinking"
sleep 5000
println "Answer Ready"
return 42

final DeepThought dt=new DeepThought ()

def theAnswer=dt.findTheAnswerToLifeTheUniverseAndEverything()
println "Doing stuff"

sleep 2000

println "Waiting"

println "The answer is ${theAnswer.get()}"

Active Objects in C++

» Do it manually with an actor

o Explicitly declare the return type
as a future

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

struct find_the_answer{std::promise<int> promise;};
static void actor_loop() {
for(;;)4
jss::actor::receive() .match<find_the_answer>(
[]1(find_the_answer fta) {
std::cout<<"Thinking\n";
std: :this_thread: :sleep_for(
std: :chrono: :seconds(5));
std: :cout<<"Answer ready\n";
fta.promise.set_value(42);
s
}
}
std: :future<int> findTheAnswerToLifeTheUniverseAndEverything(
{
find_the_answer fta;
std::future<int> res=fta.promise.get_future();
internal_actor<<std: :move(fta);
return res;

int main(){
DeepThought dt;
auto answer=dt.findTheAnswerToLifeTheUniverseAndEverything();
std::cout<<"Doing stuff\n";
std::this_thread::sleep_for(std::chrono: :seconds(2));
std::cout<<"Waiting\n";
answer.wait();
std::cout<<"The answer is "<<answer.get()<<std::endl;

Active Objects: Summary

Tasks Active methods

Communication Method calls,
futures

State Active Object's

internal state
Concurrency Limited to number
of Active Objects

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

High Level Approaches

» Actors

o Active Objects

» Dataflow

» Loop Parallelism

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Dataflow Architectures (I)

stsoftwaresolution;

Dataflow, actors high level structures in concurrent applicatio

http://www.justsoftwaresolutions.co.uk

Dataflow Architectures (I1)

» Primary concern is the flow of
data between tasks

o Tasks may be 1-1, 1-Many,
Many-1 or Many-Many

» Tasks may have state

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Dataflow Architectures (I11)

Basic task types include:
» Generators
o Filters
» Routing operations
o Transforms

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Dataflow Architectures (1V)

May define flows for:
o 1 set of inputs = 1 set of outputs

o A series of sets of inputs = a
series of sets of outputs

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Dataflow Variables

» Write-once
» May be assigned a value explicitly
» Value may be computed by a task

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Dataflow variables in Groovy

import groovyx.gpars.dataflow.DataflowVariable
import static groovyx.gpars.dataflow.Dataflow.task

final def a=new DataflowVariable()
final def b=task{
return a.val + 10

a<<b;

println "Result: ${b.vall}"

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Dataflow variables in C++

#include <jss/dataflow.hpp>
#include <iostream>

jss::dataflow::variable<int> a;
jss::dataflow::variable<int> b;

int main(){
b.task([1{
return a.get()+10;
3
a=b5;
std::cout<<"Result: "<<b.get()<<std::endl;

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Dataflow channels

A channel ties tasks together

>

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Conway's Game of Life

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

bool cell_rules(std::vector<bool> const& incoming){
bool const was_alive=incomingl[0];
unsigned const alive_neighbours=
std: :count (incoming.begin()+1,incoming.end()-1,true);
return (was_alive && (alive_neighbours==2)) ||
(alive_neighbours==3);

¥

void bind_cell_evolution_rules(){
for(unsigned x=0;x<width;++x){
for(unsigned y=0;y<height;++y){

std::vector<jss::dataflow::readable_channel<bool> > vec=
find_neighbours(x,y);

vec.push_back(heartbeat) ;

jss::dataflow: :combine(vec) .
transform(cell_rules) .write_to(cells[x] [y]);

Dataflow: Summary

Tasks Transforms,
generators, etc.

Communication Channels

State Task's internal
state

Concurrency ltems x tasks

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

High Level Approaches

o Actors

o Active Objects

o Dataflow

» Loop Parallelism

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Loop Parallelism

» Declarative: do this for each of
these data items

» Used in OpenMP, TBB, C++AMP

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Loop Parallelism (11)

Parallel versions of:

o std:
o Std:
o std:
o std:
o std:

Anthony Williams

:for_each
:find
:count
:transform

raccumulate

Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

OpenMP naive matrix multiplication

#pragma omp parallel for
for (i = 0; i < nrows; i++){
for(j = 0; j < mncols; j++){
for (k = 0; k < nrowcols; k++){
clil [j] += alillx] * blk][j];
}
}
}

This only parallelizes the outer loop

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

TBB naive matrix multiplication

parallel_for(
blocked_range<int>(O,nrows),
[&] (blocked_range<int> r) {
for (int i=r.begin();il!=r.end();++i) {
parallel_for(
blocked_range<int>(0,ncols),
[&] (blocked_range<int> r2) {
for(int j=r2.begin();j!=r2.end();++j){
for(int k=0;k<nrowcols;++k)
clil[j] += alil[k] * b[k][j];

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

C++AMP matrix multiplication

concurrency: :array_view<const float,2> va(
nrows, nrowcols, a);

concurrency: :array_view<const float,2> vb(
nrowcols, ncols, b);

concurrency: :array_view<float,2> vc(
nrows, ncols, c); vc.discard_data();

concurrency: :parallel_for_each(vc.extent,

[=] (concurrency: :index<2> idx) restrict(amp) {
int row = idx[0]; int col = idx[1];
float sum = 0.0f;
for(int i = 0; i < W; i++)

sum += va(row, i) * vb(i, col);

ve[idx] = sum;

3

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Dataflow, actors a level structures in concurrent applic

http://www.justsoftwaresolutions.co.uk

Loop Parallelism: Summary

Tasks Core loop function
Communication Shared data
State Shared data

Concurrency Limited to number
of data items

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Just:: Thread

just::thread ./

Complete C+ + Standard Thtéad Library OOO OO

just::thread provides a complete implementation of the C4++11
thread library for MSVC and g++ on Windows, and g++ for
Linux and MacOSX.

Just: :Thread Pro also coming soon, with support for many of
the high level facilities shown in this presentation. Find out more
at:

http://www.stdthread.co.uk/pro

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.stdthread.co.uk/pro
http://www.justsoftwaresolutions.co.uk

C++ Concurrency in Action:
Practical Multithreading with the
new C-++ Standard.

http://stdthread.com/book

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://stdthread.com/book
http://www.justsoftwaresolutions.co.uk

