
Concurrency in C++20 and beyond
AnthonyWilliams

Woven Planet
https://www.woven-planet.global

November 2021

https://www.woven-planet.global


Concurrency in C++20 and beyond

New Concurrency Features in C++20
New Concurrency Features for Future Standards



New Concurrency Features in
C++20



New Concurrency Features in C++20
C++20 is a huge release, with lots of new features, including
Concurrency facilities:

Support for cooperative cancellation of threads
A new thread class that automatically joins
New synchronization facilities
Updates to atomics
Coroutines



Cooperative Cancellation



Cooperative Cancellation

GUIs often have “Cancel” buttons for long-running operations.
You don’t need a GUI to want to cancel an operation.
Forcibly stopping a thread is undesirable



Cooperative Cancellation II

C++20 provides stdȂ::stop_source and stdȂ::stop_token to
handle cooperative cancellation.

Purely cooperative: if the target task doesn’t check, nothing
happens.



Cooperative Cancellation III

1 Create a stdȂ::stop_source

2 Obtain a stdȂ::stop_token from the stdȂ::stop_source
3 Pass the stdȂ::stop_token to a new thread or task
4 When you want the operation to stop call source.request_stop()
5 Periodically call token.stop_requested() to check

⇒ Stop the task if stopping requested
6 If you do not check token.stop_requested(), nothing happens



Cooperative Cancellation III

1 Create a stdȂ::stop_source
2 Obtain a stdȂ::stop_token from the stdȂ::stop_source

3 Pass the stdȂ::stop_token to a new thread or task
4 When you want the operation to stop call source.request_stop()
5 Periodically call token.stop_requested() to check

⇒ Stop the task if stopping requested
6 If you do not check token.stop_requested(), nothing happens



Cooperative Cancellation III

1 Create a stdȂ::stop_source
2 Obtain a stdȂ::stop_token from the stdȂ::stop_source
3 Pass the stdȂ::stop_token to a new thread or task

4 When you want the operation to stop call source.request_stop()
5 Periodically call token.stop_requested() to check

⇒ Stop the task if stopping requested
6 If you do not check token.stop_requested(), nothing happens



Cooperative Cancellation III

1 Create a stdȂ::stop_source
2 Obtain a stdȂ::stop_token from the stdȂ::stop_source
3 Pass the stdȂ::stop_token to a new thread or task
4 When you want the operation to stop call source.request_stop()

5 Periodically call token.stop_requested() to check
⇒ Stop the task if stopping requested

6 If you do not check token.stop_requested(), nothing happens



Cooperative Cancellation III

1 Create a stdȂ::stop_source
2 Obtain a stdȂ::stop_token from the stdȂ::stop_source
3 Pass the stdȂ::stop_token to a new thread or task
4 When you want the operation to stop call source.request_stop()
5 Periodically call token.stop_requested() to check

⇒ Stop the task if stopping requested

6 If you do not check token.stop_requested(), nothing happens



Cooperative Cancellation III

1 Create a stdȂ::stop_source
2 Obtain a stdȂ::stop_token from the stdȂ::stop_source
3 Pass the stdȂ::stop_token to a new thread or task
4 When you want the operation to stop call source.request_stop()
5 Periodically call token.stop_requested() to check

⇒ Stop the task if stopping requested
6 If you do not check token.stop_requested(), nothing happens



Cooperative Cancellation IV

stdȂ::stop_token integrates with
stdȂ::condition_variable_any, so if your code is waiting for
something to happen, the wait can be interrupted by a stop
request.



Cooperative Cancellation V
std::mutex m;
std::queue<Data> q;
std::condition_variable_any cv;

Data wait_for_data(std::stop_token st){
std::unique_lock lock(m);
if(!cv.wait_until(lock,[]{return !q.empty();},st))
throw op_was_cancelled();

Data res=q.front();
q.pop_front();
return res;

}



Cooperative Cancellation VI
You can also use stdȂ::stop_callback to provide your own
cancellation mechanism. e.g. to cancel some async IO.

Data read_file(
std::stop_token st,
std::filesystem::path filename ){

auto handle=open_file(filename);
std::stop_callback cb(st,[&]{ cancel_io(handle);});
return read_data(handle); // blocking

}



New thread class



New thread class: stdȂ::jthread
stdȂ::jthread integrates with stdȂ::stop_token to support
cooperative cancellation.

Destroying a stdȂ::jthread calls source.request_stop()
and thread.join().

The thread still needs to check the stop token passed in to the
thread function.



New thread class II
void thread_func(

std::stop_token st,
std::string arg1,int arg2){

while(!st.stop_requested()){
do_stuff(arg1,arg2);

}
}

void foo(std::string s){
std::jthread t(thread_func,s,42);
do_stuff();

} // destructor requests stop and joins



New synchronization facilities



New synchronization facilities

Latches
Barriers
Semaphores



Latches



Latches
stdȂ::latch is a single-use counter that allows threads to wait for
the count to reach zero.

1 Create the latch with a non-zero count
2 One or more threads decrease the count
3 Other threads may wait for the latch to be signalled.
4 When the count reaches zero it is permanently signalled and all
waiting threads are woken.



Waiting for tasks with a latch
void foo(){
unsigned const thread_count=...;
std::latch done(thread_count);
my_data data[thread_count];
std::vector<std::jthread> threads;
for(unsigned i=0;i<thread_count;++i)
threads.push_back(std::jthread([&,i]{
data[i]=make_data(i);
done.count_down();
do_more_stuff();

}));
done.wait();
process_data();

}



Synchronizing Tests with Latches
Using a latch is great for multithreaded tests:

1 Set up the test data
2 Create a latch
3 Create the test threads
⇒ The first thing each thread does is
test_latch.arrive_and_wait()

4 When all threads have reached the latch they are unblocked to
run their code



Barriers



Barriers
stdȂ::barrier<> is a reusable barrier.

Synchronization is done in phases:

1 Construct a barrier, with a non-zero count and a completion
function

2 One or more threads arrive at the barrier
3 These or other threads wait for the barrier to be signalled
4 When the count reaches zero, the barrier is signalled, the

completion function is called and the count is reset



Barriers II

Barriers are great for loop synchronization between parallel tasks.

The completion function allows you to do something between
loops: pass the result on to another step, write to a file, etc.



Barriers III
unsigned const num_threads=...;
void finish_task();

std::barrier<std::function<void()>> b(
num_threads,finish_task);

void worker_thread(std::stop_token st,unsigned i){
while(!st.stop_requested()){

do_stuff(i);
b.arrive_and_wait();

}
}



Semaphores



Semaphores
A semaphore represents a number of available “slots”. If you
acquire a slot on the semaphore then the count is decreased until
you release the slot.

Attempting to acquire a slot when the count is zero will either block
or fail.

A threadmay release a slot without acquiring one and vice versa.



Semaphores II

Semaphores can be used to build just about any synchronization
mechanism, including latches, barriers andmutexes.

A binary semaphore has 2 states: 1 slot free or no slots free. It can
be used as amutex.



Semaphores in C++20

C++20 has stdȂ::counting_semaphore<max_count>
stdȂ::binary_semaphore is an alias for stdȂ::counting_semaphore<1>.

As well as blocking sem.acquire(), there are also sem.try_acquire(),
sem.try_acquire_for() and sem.try_acquire_until() functions that
fail instead of blocking.



Semaphores in C++20 II

std::counting_semaphore<5> slots(5);

void func(){
slots.acquire();
do_stuff(); // at most 5 threads can be here
slots.release();

}



Updates to Atomics



Updates to Atomics

Low-level waiting for atomics
Atomic Smart Pointers
stdȂ::atomic_ref



Low-level waiting for atomics

stdȂ::atomic<T> now provides a var.wait()member function
to wait for it to change.

var.notify_one() and var.notify_all()wake one or all
threads blocked in wait().

Like a low level stdȂ::condition_variable.



Atomic smart pointers
C++20 provides stdȂ::atomic<stdȂ::shared_ptr<T>> and
stdȂ::atomic<stdȂ::weak_ptr<T>> specializations.

May or may not be lock-free
If lock-free, can simplify lock-free algorithms.
If not lock-free, a better replacement for
stdȂ::shared_ptr<T> and amutex.
Can be slow under high contention.



atomic<shared_ptr<T>> Stack
template<typename T> class stack{
struct node{
T value;
shared_ptr<node> next;
node(){} node(T&& nv):value(std::move(nv)){}

};
std::atomic<shared_ptr<node>> head;

public:
stack():head(nullptr){}
~stack(){ while(head.load()) pop(); }
void push(T);
T pop();

};



atomic<shared_ptr<T>> Stack II

template<typename T>
void stack<T>::push(T val){

auto new_node=std::make_shared<node>(
std::move(val));

new_node->next=head.load();
while(!head.compare_exchange_weak(
new_node->next,new_node)){}

}



atomic<shared_ptr<T>> Stack III
template<typename T>
T stack<T>::pop(){

auto old_head=head.load();
while(old_head){
if(head.compare_exchange_strong(

old_head,old_head->next))
return std::move(old_head->value);

}
throw std::runtime_error("Stack empty");

}



stdȂ::atomic_ref
stdȂ::atomic_ref allows you to perform atomic operations on
non-atomic objects.

This can be important when sharing headers with C code, or where
a struct needs to match a specific binary layout so you can’t use
stdȂ::atomic.

If you use stdȂ::atomic_ref to access an object, all accesses to
that object must use stdȂ::atomic_ref.



stdȂ::atomic_ref
struct my_c_struct{

int count;
data* ptr;

};

void do_stuff(my_c_struct* p){

std::atomic_ref<int> count_ref(p->count);
++count_ref;
// ...

}



Coroutines



What is a Coroutine?

A coroutine is a function that can be suspendedmid execution and
resumed at a later time.

Resuming a coroutine continues from the suspension point; local
variables have their values from the original call.



Stackless Coroutines
C++20 provides stackless coroutines

Only the locals for the current function are saved
Everything is localized
Minimal memory allocation— can havemillions of in-flight
coroutines
Whole coroutine overhead can be eliminated by the compiler
—Gor’s “disappearing coroutines”



Waiting for others
future<remote_data>
async_get_data(key_type key);

future<data> retrieve_data(
key_type key){
auto rem_data=
co_await async_get_data(key);

co_return process(rem_data);
}



What C++20 coroutines are missing
C++20 has no library support for coroutines:

=⇒ you need to write your own support code (hard) or use a third
party library.

e.g.
https://github.com/lewissbaker/cppcoro
https://github.com/David-Haim/concurrencpp

https://github.com/lewissbaker/cppcoro
https://github.com/David-Haim/concurrencpp


New Concurrency Features for
Future Standards



New Features for Future Standards
Additional concurrency facilities are under development for future
standards. These include:

A synchronization wrapper for ordinary objects
Executors— thread pools andmore
Coroutine library support for concurrency
Concurrent Data Structures
Safe Memory Reclamation Facilities



A synchronization wrapper for
ordinary objects



A synchronization wrapper

synchronized_value encapsulates a mutex and a value.

Cannot forget to lock the mutex
It’s easy to lock across a whole operation
Multi-value operations are just as easy



A synchronization wrapper II
synchronized_value<std::string> sv;

std::string get_value(){
return apply([](std::string& s){
return s;

},sv);
}

void append_string(std::string extra){
apply([&](std::string& s){

s+=extra;
},sv);

}



A synchronization wrapper III

synchronized_value<std::string> sv;
synchronized_value<std::string> sv2;

std:string combine_strings(){
return apply(
[&](std::string& s,std::string & s2){

return s+s2;
},sv,sv2);

}



Executors



Executors

Executor
An object that controls how, where and when a task is
executed

Thread pools are a special case of Executors.



Executors⇒ Senders and Receivers
Executor as a concept combines too many responsibilities. The
stdȂ::execution proposal splits them into 3:

Scheduler
Controlswhere a task is to be run

Sender
Controlswhat the task is

Receiver
Controlswhat to do with the result



Senders and Receivers
Asynchronous operation are pipelines: each sender is chained to a
receiver, which can then initiate another sender, or just store the
result somewhere.

Initial sender⇒ receiver⇒ sender⇒ receiver⇒ sender⇒…⇒…
⇒ final receiver

The scheduler runs the pipeline.



Senders and Receivers
Schedulers are things like thread pools and GPU schedulers.

Receivers are usually internal to algorithms like
stdȂ::executionȂ::then and
stdȂ::this_threadȂ::sync_wait.

Application-level code usually focuses on constructing Senders
from the tasks that need to be done.



Scheduling work
If you have a task that needs to be run, the simplest mechanism is
just to call stdȂ::executionȂ::execute.

// Assumed for all subsequent examples
namespace execution=std::execution;

execution::execute(some_scheduler,[]{
do_something();

});

This detaches the work, so you can’t wait for it.



Scheduling work
executionȂ::execute can be split into multiple steps:

auto initial_sender=execution::schedule(my_scheduler);

auto work_sender=execution::then(initial_sender, []{
do_something();

});

execution::start_detached(work_sender);



Waiting

You can start execution on a scheduler, and then wait for the result.

auto done=execution::ensure_started(work_sender);

do_other_stuff();

auto result = std::this_thread::sync_wait(done);



Scheduling work
You can chain operations together with executionȂ::then:

auto initial_sender=execution::schedule(my_scheduler);
auto middle_sender=execution::then(initial_sender, []{

return find_the_answer();
});

auto work_sender=execution::then(
middle_sender, [](int answer){

return find_the_question(answer);
});

auto result = std::this_thread::sync_wait(work_sender);



Pipelines

Code can be simplified using pipes (|) rather than named variables.

auto work_sender=execution::schedule(my_scheduler) |
execution::then(find_the_answer) |
execution::then(find_the_question);

auto result = std::this_thread::sync_wait(work_sender);



Handling errors
By default, exceptions are propagated down the pipeline, and
rethrown from sync_wait.
executionȂ::upon_error can be used to handle errorswithin
the pipeline.

auto work_sender=execution::schedule(my_scheduler) |
execution::then(do_something) |
execution::upon_error(handle_error) |
execution::then(do_something_else);

auto result = std::this_thread::sync_wait(work_sender);



Libunifex

https://github.com/facebookexperimental/libunifex

Provides a sample implementation of the executor model and
extensive documentation.

https://github.com/facebookexperimental/libunifex


Coroutine support for concurrency



Coroutine support for concurrency
I hope to see things like task<T> that allows you to write a
coroutine intended to run as an async task:

task<int> task1();
task<int> task2();

task<int> sum(){
int r1=co_await task1();
int r2=co_await task2();
co_return r1+r2;

}



Coroutines support for concurrency

All awaitables are senders:

task<int> coroutine_task();

auto foo() {
return execution::sync_wait(coroutine_task());

}



Coroutine support for concurrency

Some senders are awaitable:

task<int> other_coro(){
auto sender = execution::schedule(my_scheduler) |
execution::then(find_the_answer);

co_return co_wait sender;
}



Concurrent Data Structures



Concurrent Data Structures

Developers commonly need data structures that allow concurrent
access.

Proposals for standardization include:
Concurrent Queues
Concurrent Hash Maps



Concurrent Queues
Queues are a core mechanism for communicating between
threads.

concurrent_queue<MyData> q;

void producer_thread(){
q.push(generate_data());

}
void consumer_thread(){

process_data(q.value_pop());
}



Concurrent Hash Maps

Hashmaps are often used for fast look-up of data
Using amutex for synchronization can hurt performance
Special implementations designed for concurrent access can
be better



Safe Memory Reclamation
Facilities



Safe Memory Reclamation Facilities
Lock-free algorithms need a way to delete data when no other thread is
accessing it.

RCU provides a lock-free read side. Deletion is either blocking or deferred on a
background thread.

Hazard pointers defer deletion, and provide a different set of performance
trade-offs.

Both mechanisms are in the second Concurrency TS for future C++
standardization.



Proposals

Here are the papers for those future things that have proposals:
Synchronized Value: P0290
Senders and Receivers: P2300
Concurrency TS2 draft (Hazard pointers and RCU): N4895
Concurrent Queues: P0260
Concurrent Hash Map: P0652 P1761

http://wg21.link/p0290
http://wg21.link/p2300
http://wg21.link/n4895
http://wg21.link/p0260
http://wg21.link/p0652
http://wg21.link/p1761


My Book
C++ Concurrency in Action

Second Edition

Covers C++17 and the
first Concurrency TS

C++20 Addendum coming soon!

cplusplusconcurrencyinaction.com

https://www.cplusplusconcurrencyinaction.com


Questions?


	New Concurrency Features in C++20
	Cooperative Cancellation
	New thread class
	New synchronization facilities
	Latches
	Barriers
	Semaphores
	Updates to Atomics
	Coroutines
	New Concurrency Features for Future Standards
	A synchronization wrapper for ordinary objects
	Executors
	Coroutine support for concurrency
	Concurrent Data Structures
	Safe Memory Reclamation Facilities
	Questions?

