


Library Approaches for Strong Type Aliases

Background — Why do we need this?

Solutions — How can we do this?



Background



Background

There are 3 reasons for using Strong Type Aliases rather than
common types:

For correctness
For clarity
For extensibility



Background

The basic problem is that built-in types and common library types are
too common.

Even hidden by typedef or using, they are indistinguishable.

Plus, implicit conversions make things too easily interchangeable.



Problem 1

Confusion about the order of parameters:

char const fillChar=’0’;
int const count=5;
std::string s(fillChar,count);

int const rows=3;
int const columns=4;
Matrix m{columns,rows};



Problem 2

Confusion about the units of a value:

void sleep(int seconds);
int const pause_milliseconds=5;
sleep(pause_milliseconds);

void accelerate_to(double metres_per_second);
double const target_speed_mph=4.3;
accelerate_to(target_speed_mph);



Problem 3

Confusion over meaning of a parameter:

int port=1234;
Socket s1{port};
Socket s2{socket(AF_INET,SOCK_STREAM,0)};

int8_t count=get_count();
std::cout<<"There are "<<count<<" elements\n";



Problem 4

Lack of extensibility:

Using a common type limits the interface to an exact set of
operations. You cannot add additional domain-specific operations
that apply to only your values.



Problem 5

Difficulty overloading operations:

void do_stuff(intfast16_t);
void do_stuff(intfast32_t);



Problem 6

Duplicate template instantiations or specializations:

template<typename T>
class Stuff{};

template class Stuff<intfast16_t>;
template class Stuff<intfast32_t>;

template<> class Stuff<intleast16_t>{};
template<> class Stuff<intleast32_t>{};



Problem 7

It is easy to use the wrong function:
using name_type=std::string;
using email_type=std::string;

name_type name="Anthony";
email_type email="anthony@justsoftwaresolutions.co.uk";
print_email(std::cout,email);
print_email(std::cout,name); // oops



Solutions



Whole Value

The solution is to create a unique type for each distinct usage.

This is the Whole Value idiom: the “whole value” of something
includes the type and units:

£4.32
27.6km
“Anthony” is a name
“anthony@justsoftwaresolutions.co.uk” is an email address



Whole Value in C++

The basic idea is to create a class for each use case rather than
reusing a common type:

struct LengthInMetres{
double value;

};

This quickly gets tedious, especially when you to add operations to
your types.



Domain values

We can create a template for a specific domain of values, possibly
with parameters for the underlying type and units.

std::duration<short,std::chrono::nano>

length_t<int,std::kilo>

We can easily add appropriate domain operations.

kmh_t speed=5_km / 2_h;



One-off values

Some values are not part of a larger domain:

Names
Email addresses
Numeric IDs
Row/column counts

But they may have common operations.



Common operations

Arithmetic operations for numeric values

Stream output
Comparisons — equality or ordering
Hashing — for use as a key to an unordered_map

Conversion to a string
User-defined conversions



Common operations

Arithmetic operations for numeric values
Stream output

Comparisons — equality or ordering
Hashing — for use as a key to an unordered_map

Conversion to a string
User-defined conversions



Common operations

Arithmetic operations for numeric values
Stream output
Comparisons — equality or ordering

Hashing — for use as a key to an unordered_map

Conversion to a string
User-defined conversions



Common operations

Arithmetic operations for numeric values
Stream output
Comparisons — equality or ordering
Hashing — for use as a key to an unordered_map

Conversion to a string
User-defined conversions



Common operations

Arithmetic operations for numeric values
Stream output
Comparisons — equality or ordering
Hashing — for use as a key to an unordered_map

Conversion to a string

User-defined conversions



Common operations

Arithmetic operations for numeric values
Stream output
Comparisons — equality or ordering
Hashing — for use as a key to an unordered_map

Conversion to a string
User-defined conversions



Eliminating boilerplate

Implementing the common operations for every one-off type is
tedious, time consuming, and leads to duplicated code. =⇒ We
need a solution that eliminates this boilerplate

There are fundamentally two general solutions in C++: Macros or
Templates.

Macros are horrid, so that leaves us with templates.



Overall design

We want the declaration of a custom type to be as simple as possible:

using MyType=strong_typedef</* something */>;

More than this is too much boilerplate, and it quickly becomes easier
to manually write a custom type.



Unique types

We want each use to have a unique type, otherwise it defeats the
purpose.

We also need to specify the underlying type.

using MyType=strong_typedef<
struct my_type_tag, // a tag type for uniqueness
int, // the underlying type
/* other args */>;



Other requirements

Explicitly constructible from underlying type
So we can say MyType(42)
Not implicitly convertible from underlying type
So we can’t accidentally pass values to the wrong argument.

int f(MyType mt);
int i=f(42); // won’t compile



Additional operations

We want to make it easy to add operations like arithmetic,
comparisons, etc.

We can do this with the additional arguments:

using MyType=strong_typedef<
struct my_type_tag,
int,
strong_typedef_properties::addable,
strong_typedef_properties::equality_comparable>;



Value access

Access to the underlying value is via the underlying_value
member function:

MyInt mi{42};
int& i=mi.underlying_value();
i+=99; // update internal value



Explicit conversion

Values can be explicitly converted to the underlying value:

MyInt mi{42};
int i=mi; // error
int j=static_cast<int>(mi); // OK



Basic definition

Our strong_typedef template provides basic operations itself:

template <typename Tag, typename Type, typename... Props>
class strong_typedef: /* bases */ {
public:

constexpr strong_typedef() noexcept;
explicit constexpr strong_typedef(Type value_);
explicit constexpr operator Type const &() const noexcept;
constexpr Type const &underlying_value() const noexcept;
constexpr Type &underlying_value() noexcept;

private:
Type value;

};



Property definitions

A property such as pre_incrementable is a type with a member
template mixin.

struct pre_incrementable {
template <typename Derived, typename ValueType>
struct mixin {

friend Derived &operator++(Derived &self) noexcept(
noexcept(++std::declval<ValueType &>())) {

++self.underlying_value();
return self;

}
};

};



Using properties in the implementation

Our template can thus derive from the mixins:

template <typename Tag, typename ValueType,
typename... Properties>

class strong_typedef
: public Properties::template mixin<

strong_typedef<Tag, ValueType, Properties...>,
ValueType>... {

// ...
};



Using properties

Fine grained properties mean you can have fine-grained control over
operations available on your types:

using SessionId=strong_typedef<
struct session_id_tag, unsigned long long,
strong_typedef_properties::post_incrementable,
strong_typedef_properties::equality_comparable,
strong_typedef_properties::ordered,
strong_typedef_properties::streamable>;

SessionIds can be compared for equality or ordering, written to a
stream, or incremented with id++, but general arithmetic and other
operations are forbidden.



Combining properties

This still gets tedious if you have lots of common operations: equality
and ordering comparisons, addition and subtraction, all the bitwise
operations, etc.

The mixin-based scheme allows you to combine properties:

struct comparable {
template <typename Derived, typename ValueType>
struct mixin

: ordered::template mixin<Derived, ValueType>,
equality_comparable::template mixin<Derived, ValueType> {};

};



Hashing

A common requirement is support for std::hash, so the type can
be used as a key in a std::unordered_map.

This requires specializing std::hash, since it has no extension
points.

We only want it to work where the user has requested it.



Hashing

The mixin itself just derives from an empty struct:

struct hashable {
struct base {};
template <typename Derived, typename ValueType>
struct mixin : base {};

};



Hashing

The specialization then checks for the base class:
template <typename Tag, typename Type, typename... Prop>
struct hash<strong_typedef<Tag, Type, Prop...>> {
template <typename Arg>
typename std::enable_if<

std::is_base_of<
strong_typedef_properties::hashable::base, Arg>::value,
size_t>::type

operator()(Arg const &arg) const noexcept(noexcept(
std::hash<Type>()(std::declval<Type const &>()))) {
return std::hash<Type>()(arg.underlying_value());

}
};



Custom properties

Though the library provides properties for most basic things, you
might want others. For example, a type based on std::string
might want to provide s.c_str() or s.substr() operations.

This can be easily done by defining your own property type.



Custom properties

struct string_properties{
template<typename Derived,typename ValueType>
struct mixin{

const char* c_str() const noexcept{
return static_cast<const Derived&>(*this).

underlying_value().c_str();
}
Derived substr(

size_t pos,size_t length) const noexcept {
return Derived(static_cast<const Derived&>(*this).

underlying_value().substr(pos,length));
}

};
};



Example Uses

using SessionId=strong_typedef<
struct session_id_tag, unsigned long long,
stp::incrementable, stp::streamable,
stp::comparable, stp::hashable>;

using UserName=strong_typedef<
struct username_tag, std::string,
stp::streamable, stp::comparable,
stp::hashable>;

using Password=strong_typedef<
struct password_tag, std::string>;



Debugging

gdb displays empty base classes by default if you display values, so
all those mixins get printed, complete with their type names and
template parameters.

I added a custom pretty printer to print just the value; you might want
to do the same for other debuggers.

(gdb) print st
{value=42}



Links

jss::strong_typedef
https://github.com/anthonywilliams/strong_typedef

PSsst
https://github.com/PeterSommerlad/PSsst

WholeValue
https://github.com/martinmoene/WholeValue

Boost.Units
https:
//www.boost.org/doc/libs/1_76_0/doc/html/boost_units.html

mp-units
https://github.com/mpusz/units

https://github.com/anthonywilliams/strong_typedef
https://github.com/PeterSommerlad/PSsst
https://github.com/martinmoene/WholeValue
https://www.boost.org/doc/libs/1_76_0/doc/html/boost_units.html
https://www.boost.org/doc/libs/1_76_0/doc/html/boost_units.html
https://github.com/mpusz/units


My Book

C++ Concurrency in Action
Second Edition

Covers C++17 and the
Concurrency TS

C++20 addendum coming soon

cplusplusconcurrencyinaction.com

https://www.cplusplusconcurrencyinaction.com


Questions?


