Library Approaches for Strong Type

Aliases
Anthony Williams

Library Approaches for Strong Type Aliases

e Background — Why do we need this?

e Solutions — How can we do this?

Background

Background

There are 3 reasons for using Strong Type Aliases rather than
common types:

e For correctness
e For clarity
e For extensibility

Background

The basic problem is that built-in types and common library types are
too common.

Even hidden by typedef or using, they are indistinguishable.

Plus, implicit conversions make things too easily interchangeable.

Problem 1

Confusion about the order of parameters:

char const fillChar="0";
int const count=5;
std::string s(fillChar, count);

int const rows=3;
int const columns=4;
Matrix m{columns, rows};

Problem 2

Confusion about the units of a value:

void sleep(int seconds);
int const pause_milliseconds=5;
sleep (pause_milliseconds) ;

volid accelerate_to(double metres_per_second);
double const target_speed_mph=4.3;
accelerate_to(target_speed_mph);

Problem 3

Confusion over meaning of a parameter:

int port=1234;
Socket sl{port};
Socket s2{socket (AF_INET, SOCK_STREAM, 0) };

int8_t count=get_count ();
std: :cout<<"There are "<<count<<" elements\n";

Problem 4

Lack of extensibility:

Using a common type limits the interface to an exact set of
operations. You cannot add additional domain-specific operations

that apply to only your values.

Problem 5

Difficulty overloading operations:

void do_stuff (intfastlo_t);
void do_stuff (intfast32_t);

Problem 6

Duplicate template instantiations or specializations:

template<typename T>
class Stuff{};

template class Stuff<intfastl6_t>;
template class Stuff<intfast32_t>;

template<> class Stuff<intleastlo6_t>{};
template<> class Stuff<intleast32_t>{};

Problem 7

It is easy to use the wrong function:

using name_type=std::string;
using email_type=std::string;

name_type name="Anthony";

email_ type email="anthony@justsoftwaresolutions.co.uk";
print_email (std::cout,email);

print_email (std::cout,name); // oops

Solutions

Whole Value

The solution is to create a unique type for each distinct usage.

This is the Whole Value idiom: the “whole value” of something
includes the type and units:

e £4.32

e 27.6km

e “Anthony” is a name

e “anthony@justsoftwaresolutions.co.uk” is an email address

Whole Value in C++

The basic idea is to create a class for each use case rather than
reusing a common type:

struct LengthInMetres/{
double value;

}s

This quickly gets tedious, especially when you to add operations to
your types.

Domain values

We can create a template for a specific domain of values, possibly
with parameters for the underlying type and units.

@ std: :duration<short, std: :chrono: :nano>
@ length_t<int,std::kilo>

We can easily add appropriate domain operations.

kmh_t speed=5_km / 2_h;

One-off values

Some values are not part of a larger domain:

o Names

e Email addresses

e Numeric IDs

e Row/column counts

But they may have common operations.

Common operations

e Arithmetic operations for numeric values

Common operations

e Arithmetic operations for numeric values
e Stream output

Common operations

e Arithmetic operations for numeric values
e Stream output
e Comparisons — equality or ordering

Common operations

e Arithmetic operations for numeric values

e Stream output

e Comparisons — equality or ordering

e Hashing — for use as a key to an unordered_map

Common operations

e Arithmetic operations for numeric values

e Stream output

e Comparisons — equality or ordering

e Hashing — for use as a key to an unordered_map
e Conversion to a string

Common operations

e Arithmetic operations for numeric values

e Stream output

e Comparisons — equality or ordering

e Hashing — for use as a key to an unordered_map
e Conversion to a string

e User-defined conversions

Eliminating boilerplate

Implementing the common operations for every one-off type is
tedious, time consuming, and leads to duplicated code. —- We
need a solution that eliminates this boilerplate

There are fundamentally two general solutions in C++: Macros or
Templates.

Macros are horrid, so that leaves us with templates.

Overall design

We want the declaration of a custom type to be as simple as possible:
using MyType=strong_typedef</* something */>;

More than this is too much boilerplate, and it quickly becomes easier
to manually write a custom type.

Unique types

We want each use to have a unique type, otherwise it defeats the
purpose.

We also need to specify the underlying type.

using MyType=strong_typedef<
struct my_type_tag, // a tag type for uniqueness
int, // the underlying type
/* other args */>;

Other requirements

e Explicitly constructible from underlying type
So we can say MyType (42)
e Not implicitly convertible from underlying type
So we can’t accidentally pass values to the wrong argument.

int £ (MyType mt);
int i=f(42); // won’'t compile

Additional operations

We want to make it easy to add operations like arithmetic,
comparisons, etc.

We can do this with the additional arguments:

using MyType=strong_typedef<
struct my_type_tag,
int,
strong_typedef_properties::addable,
strong_typedef_properties::equality_comparable>;

Value access

Access to the underlying value is via the underlying_value
member function:

MyInt mi{42};
int& i=mi.underlying_value () ;
i+=99; // update internal value

Explicit conversion

Values can be explicitly converted to the underlying value:

MyInt mi{42};
int i=mi; // error
int j=static_cast<int>(mi); // OK

Basic definition

Our strong_typedef template provides basic operations itself:

template <typename Tag, typename Type, typename... Props>
class strong_typedef: /* bases */ {
public:
constexpr strong_typedef () noexcept;
explicit constexpr strong_typedef (Type value_);
explicit constexpr operator Type const & () const noexcept;
constexpr Type const &underlying_value() const noexcept;
constexpr Type &underlying_value () noexcept;
private:

Type value;

}i

Property definitions

A property such as pre_incrementable is a type with a member
template mixin.

struct pre_incrementable {
template <typename Derived, typename ValueType>
struct mixin {
friend Derived &operator++ (Derived &self) noexcept (
noexcept (++std: :declval<ValueType &>())) |
++self.underlying_value();
return self;

}i
}i

Using properties in the implementation

Our template can thus derive from the mixins:

template <typename Tag, typename ValueType,
typename... Properties>
class strong_typedef
public Properties::template mixin<
strong_typedef<Tag, ValueType, Properties...>,
ValueType>... {
//
i

Using properties

Fine grained properties mean you can have fine-grained control over
operations available on your types:

using SessionId=strong_typedef<
struct session_id_tag, unsigned long long,
strong_typedef_properties::post_incrementable,
strong_typedef_ properties::equality_comparable,
strong_typedef_ properties::ordered,
strong_typedef_properties::streamable>;

SessionIds can be compared for equality or ordering, written to a
stream, or incremented with i d++, but general arithmetic and other
operations are forbidden.

Combining properties

This still gets tedious if you have lots of common operations: equality
and ordering comparisons, addition and subtraction, all the bitwise
operations, etc.

The mixin-based scheme allows you to combine properties:

struct comparable {
template <typename Derived, typename ValueType>
struct mixin
ordered: :template mixin<Derived, ValueType>,
equality_comparable::template mixin<Derived, ValueType>

}i

A common requirement is support for std: :hash, so the type can
be used as a key ina std: :unordered_map.

This requires specializing std: :hash, since it has no extension
points.

We only want it to work where the user has requested it.

Hashing

The mixin itself just derives from an empty struct:

struct hashable {
struct base {};
template <typename Derived, typename ValueType>
struct mixin : base {};

}i

Hashing

The specialization then checks for the base class:
typename... Prop>

template <typename Tag, typename Type,
Prop...>> {

struct hash<strong_typedef<Tag, Type,

template <typename Arg>

typename std::enable_if<
std::1is_base_of<
strong_typedef_properties::hashable: :base,
size_t>::type

operator () (Arg const &arg) const noexcept (noexcept (
std: :hash<Type> () (std::declval<Type const &>())))
return std::hash<Type> () (arg.underlying_value());

Arg>::value,

{

}i

Custom properties

Though the library provides properties for most basic things, you
might want others. For example, a type based on std: :string
might want to provide s.c_str () or s.substr () operations.

This can be easily done by defining your own property type.

Custom properties

struct string properties{
template<typename Derived, typename ValueType>
struct mixin{
const char* c_str() const noexcept{
return static_cast<const Derived&> (xthis).
underlying value () .c_str();
}
Derived substzr(
size_t pos,size_t length) const noexcept {
return Derived (static_cast<const Derivedé&> (xthis).
underlying_value () .substr (pos, length));

bi
}i

Example Uses

using SessionlId=strong_typedef<
struct session_id_tag, unsigned long long,
stp::incrementable, stp::streamable,
stp::comparable, stp::hashable>;

using UserName=strong_typedef<
struct username_tag, std::string,
stp::streamable, stp::comparable,
stp::hashable>;

using Password=strong_typedef<
struct password_tag, std::string>;

Debugging

gdb displays empty base classes by default if you display values, so
all those mixins get printed, complete with their type names and
template parameters.

| added a custom pretty printer to print just the value; you might want
to do the same for other debuggers.

(gdb) print st
{value=42}

Links

@ jss::strong_typedef
https://github.com/anthonywilliams/strong_typedef
@ PSsst
https://github.com/PeterSommerlad/PSsst
e WholeValue
https://github.com/martinmoene/WholeValue
@ Boost.Units
https:
//www.boost .org/doc/1libs/1_76_0/doc/html/boost_units.html
@ mp-units
https://github.com/mpusz/units

https://github.com/anthonywilliams/strong_typedef
https://github.com/PeterSommerlad/PSsst
https://github.com/martinmoene/WholeValue
https://www.boost.org/doc/libs/1_76_0/doc/html/boost_units.html
https://www.boost.org/doc/libs/1_76_0/doc/html/boost_units.html
https://github.com/mpusz/units

SECOND EDITION

Anthony Williams

| | ITTTHT

C++ Concurrency in Action
Second Edition

Covers C++17 and the
Concurrency TS

C++20 addendum coming soon

cplusplusconcurrencyinaction.com

https://www.cplusplusconcurrencyinaction.com

Questions?

