
Get off my thread: Techniques for moving
work to background threads

Anthony Williams

Just Software Solutions Ltd
https://www.justsoftwaresolutions.co.uk

September 2020

https://www.justsoftwaresolutions.co.uk


Get off my thread: Techniques for moving work to
background threads

Why do we need to move work off the current
thread?
How do we move work off the current thread?
Final Guidelines and Questions



Why do we need to move work
off the current thread?



Why do we need to move work off the current thread?

Many environments have a dedicated thread for
processing events:

GUIs
Client-Server applications

Performing extensive processing on the event thread
prevents other events from being handled.



Why do we need to move work off the current thread?

Delaying response to external events can have
undesirable consequences:

Microsoft Windows will grey-out the entire application
window if it doesn’t respond to events
Web browsers will time out if the web server doesn’t
respond within a reasonable time
Other network applications will assume an operation
failed if no response is received within a reasonable
time



Why do we need to move work off the current thread?

Delaying response to external events can have
undesirable consequences:

Microsoft Windows will grey-out the entire application
window if it doesn’t respond to events

Web browsers will time out if the web server doesn’t
respond within a reasonable time
Other network applications will assume an operation
failed if no response is received within a reasonable
time



Why do we need to move work off the current thread?

Delaying response to external events can have
undesirable consequences:

Microsoft Windows will grey-out the entire application
window if it doesn’t respond to events
Web browsers will time out if the web server doesn’t
respond within a reasonable time

Other network applications will assume an operation
failed if no response is received within a reasonable
time



Why do we need to move work off the current thread?

Delaying response to external events can have
undesirable consequences:

Microsoft Windows will grey-out the entire application
window if it doesn’t respond to events
Web browsers will time out if the web server doesn’t
respond within a reasonable time
Other network applications will assume an operation
failed if no response is received within a reasonable
time



Why do we need to move work off the current thread?

We don’t just need to move the work, we need to prevent
blocking on our event-handling threads.

void event_handler(){
auto handle=spawn_background_task();
handle.wait(); // no benefit

}



Aside: Non-Blocking vs Lock-free

In lots of cases, short-term blocking (e.g. with short-lived
std::mutex locks) is OK.

⇒ for those cases, Non-Blocking means Not waiting for
a lengthy task to run.

In other cases, Non-Blocking means Obstruction Free
— If you suspend all but one thread at any point, that
one thread will complete its task.

⇒ for those cases, you need Lock-free allocators,
message queues, etc.



Aside: Non-Blocking vs Lock-free

In lots of cases, short-term blocking (e.g. with short-lived
std::mutex locks) is OK.

⇒ for those cases, Non-Blocking means Not waiting for
a lengthy task to run.

In other cases, Non-Blocking means Obstruction Free
— If you suspend all but one thread at any point, that
one thread will complete its task.

⇒ for those cases, you need Lock-free allocators,
message queues, etc.



How do we move work off the
current thread?



How do we move work off the current thread?

Possible ways to move the work off the current thread:

Spawn a new thread for each event handler
Pass data to a dedicated background thread
Submit tasks to a generic thread pool
Submit tasks to a special purpose executor



How do we move work off the current thread?

Possible ways to move the work off the current thread:

Spawn a new thread for each event handler

Pass data to a dedicated background thread
Submit tasks to a generic thread pool
Submit tasks to a special purpose executor



How do we move work off the current thread?

Possible ways to move the work off the current thread:

Spawn a new thread for each event handler
Pass data to a dedicated background thread

Submit tasks to a generic thread pool
Submit tasks to a special purpose executor



How do we move work off the current thread?

Possible ways to move the work off the current thread:

Spawn a new thread for each event handler
Pass data to a dedicated background thread
Submit tasks to a generic thread pool

Submit tasks to a special purpose executor



How do we move work off the current thread?

Possible ways to move the work off the current thread:

Spawn a new thread for each event handler
Pass data to a dedicated background thread
Submit tasks to a generic thread pool
Submit tasks to a special purpose executor



Spawning new threads

There are lots of ways to spawn new threads:

std::thread

std::jthread

std::async(std::launch::async,...)

Platform-specific APIs

They all have the same problem: detaching the thread
leaves it running, but joining the thread means you have
to keep the handle around.



Spawning new threads

There are lots of ways to spawn new threads:

std::thread

std::jthread

std::async(std::launch::async,...)

Platform-specific APIs

They all have the same problem: detaching the thread
leaves it running, but joining the thread means you have
to keep the handle around.



Managing thread handles

std::thread and std::jthread are similar:

std::vector<std::jthread> pending_threads;

void handle_event(Event details){
auto handle=std::jthread(

[=]{process_event(details);});
pending_threads.push_back(

std::move(handle));
}

There is no reasonable way to test if any of the entries in
pending_threads can be joined.



Managing thread handles

std::thread and std::jthread are similar:

std::vector<std::jthread> pending_threads;

void handle_event(Event details){
auto handle=std::jthread(

[=]{process_event(details);});
pending_threads.push_back(

std::move(handle));
}

There is no reasonable way to test if any of the entries in
pending_threads can be joined.



Managing thread handles II

std::async is a bit better: we can check the
std::future to see if it is ready.

std::vector<std::future<void>> pending_threads;

void handle_event(Event details){
auto handle=std::async(

std::launch::async,
[=]{process_event(details);});

pending_threads.push_back(
std::move(handle));

}



Managing thread handles III

Can remove completed tasks by periodically checking:

void check_for_done_threads(){
for(auto it=pending_threads.begin();

it!=pending_threads.end();){
if(it->wait_for(0s)==

std::future_status_ready)
it=pending_threads.erase(it);

else ++it;
}

}

This is nasty: if you have a lot of events, you spawn a lot
of threads, so the list will get large.



Managing thread handles III

Can remove completed tasks by periodically checking:

void check_for_done_threads(){
for(auto it=pending_threads.begin();

it!=pending_threads.end();){
if(it->wait_for(0s)==

std::future_status_ready)
it=pending_threads.erase(it);

else ++it;
}

}

This is nasty: if you have a lot of events, you spawn a lot
of threads, so the list will get large.



Guideline

Spawning a new thread for every
task is a bad idea.



Dedicated threads

A dedicated thread can be a reasonable idea.

1 The dedicated thread is created
2 The event handler receives an event
3 The event handler reposts the event as a message to

the dedicated thread
4 The event handler returns ready to receive a new

event
5 (sometime later) The dedicated thread receives the

message and processes it
6 The dedicated thread waits for more messages to

process
7 (eventually) The dedicated thread is destroyed



Dedicated threads

A dedicated thread can be a reasonable idea.

1 The dedicated thread is created

2 The event handler receives an event
3 The event handler reposts the event as a message to

the dedicated thread
4 The event handler returns ready to receive a new

event
5 (sometime later) The dedicated thread receives the

message and processes it
6 The dedicated thread waits for more messages to

process
7 (eventually) The dedicated thread is destroyed



Dedicated threads

A dedicated thread can be a reasonable idea.

1 The dedicated thread is created
2 The event handler receives an event

3 The event handler reposts the event as a message to
the dedicated thread

4 The event handler returns ready to receive a new
event

5 (sometime later) The dedicated thread receives the
message and processes it

6 The dedicated thread waits for more messages to
process

7 (eventually) The dedicated thread is destroyed



Dedicated threads

A dedicated thread can be a reasonable idea.

1 The dedicated thread is created
2 The event handler receives an event
3 The event handler reposts the event as a message to

the dedicated thread

4 The event handler returns ready to receive a new
event

5 (sometime later) The dedicated thread receives the
message and processes it

6 The dedicated thread waits for more messages to
process

7 (eventually) The dedicated thread is destroyed



Dedicated threads

A dedicated thread can be a reasonable idea.

1 The dedicated thread is created
2 The event handler receives an event
3 The event handler reposts the event as a message to

the dedicated thread
4 The event handler returns ready to receive a new

event

5 (sometime later) The dedicated thread receives the
message and processes it

6 The dedicated thread waits for more messages to
process

7 (eventually) The dedicated thread is destroyed



Dedicated threads

A dedicated thread can be a reasonable idea.

1 The dedicated thread is created
2 The event handler receives an event
3 The event handler reposts the event as a message to

the dedicated thread
4 The event handler returns ready to receive a new

event
5 (sometime later) The dedicated thread receives the

message and processes it

6 The dedicated thread waits for more messages to
process

7 (eventually) The dedicated thread is destroyed



Dedicated threads

A dedicated thread can be a reasonable idea.

1 The dedicated thread is created
2 The event handler receives an event
3 The event handler reposts the event as a message to

the dedicated thread
4 The event handler returns ready to receive a new

event
5 (sometime later) The dedicated thread receives the

message and processes it
6 The dedicated thread waits for more messages to

process

7 (eventually) The dedicated thread is destroyed



Dedicated threads

A dedicated thread can be a reasonable idea.

1 The dedicated thread is created
2 The event handler receives an event
3 The event handler reposts the event as a message to

the dedicated thread
4 The event handler returns ready to receive a new

event
5 (sometime later) The dedicated thread receives the

message and processes it
6 The dedicated thread waits for more messages to

process
7 (eventually) The dedicated thread is destroyed



Dedicated threads: downsides

Downsides to dedicated threads:

The thread is long-lived and consumes resources

The handling of the event is disconnected from the
event
No parallel processing: it’s a single thread!



Dedicated threads: downsides

Downsides to dedicated threads:

The thread is long-lived and consumes resources
The handling of the event is disconnected from the
event

No parallel processing: it’s a single thread!



Dedicated threads: downsides

Downsides to dedicated threads:

The thread is long-lived and consumes resources
The handling of the event is disconnected from the
event
No parallel processing: it’s a single thread!



Dedicated threads: upsides

Upsides to dedicated threads:

The events are handled in the same order as they
arrive at the initial event handler

The dedicated thread only communicates with the
outside world via messages, so is easy to design and
test
Cancelling all outstanding tasks is easy: just shut
down the thread



Dedicated threads: upsides

Upsides to dedicated threads:

The events are handled in the same order as they
arrive at the initial event handler
The dedicated thread only communicates with the
outside world via messages, so is easy to design and
test

Cancelling all outstanding tasks is easy: just shut
down the thread



Dedicated threads: upsides

Upsides to dedicated threads:

The events are handled in the same order as they
arrive at the initial event handler
The dedicated thread only communicates with the
outside world via messages, so is easy to design and
test
Cancelling all outstanding tasks is easy: just shut
down the thread



Thread pools

If a dedicated processing thread isn’t the ideal fit, an
alternative is a pool of threads

1 The thread pool is created
2 The event handler receives an event
3 The event handler reposts the event as a task to the

thread pool
4 The event handler returns ready to receive a new

event
5 (sometime later) A thread from the pool runs the task
6 The thread then waits for a new task
7 (eventually) The thread pool is destroyed



Thread pools

If a dedicated processing thread isn’t the ideal fit, an
alternative is a pool of threads

1 The thread pool is created

2 The event handler receives an event
3 The event handler reposts the event as a task to the

thread pool
4 The event handler returns ready to receive a new

event
5 (sometime later) A thread from the pool runs the task
6 The thread then waits for a new task
7 (eventually) The thread pool is destroyed



Thread pools

If a dedicated processing thread isn’t the ideal fit, an
alternative is a pool of threads

1 The thread pool is created
2 The event handler receives an event

3 The event handler reposts the event as a task to the
thread pool

4 The event handler returns ready to receive a new
event

5 (sometime later) A thread from the pool runs the task
6 The thread then waits for a new task
7 (eventually) The thread pool is destroyed



Thread pools

If a dedicated processing thread isn’t the ideal fit, an
alternative is a pool of threads

1 The thread pool is created
2 The event handler receives an event
3 The event handler reposts the event as a task to the

thread pool

4 The event handler returns ready to receive a new
event

5 (sometime later) A thread from the pool runs the task
6 The thread then waits for a new task
7 (eventually) The thread pool is destroyed



Thread pools

If a dedicated processing thread isn’t the ideal fit, an
alternative is a pool of threads

1 The thread pool is created
2 The event handler receives an event
3 The event handler reposts the event as a task to the

thread pool
4 The event handler returns ready to receive a new

event

5 (sometime later) A thread from the pool runs the task
6 The thread then waits for a new task
7 (eventually) The thread pool is destroyed



Thread pools

If a dedicated processing thread isn’t the ideal fit, an
alternative is a pool of threads

1 The thread pool is created
2 The event handler receives an event
3 The event handler reposts the event as a task to the

thread pool
4 The event handler returns ready to receive a new

event
5 (sometime later) A thread from the pool runs the task

6 The thread then waits for a new task
7 (eventually) The thread pool is destroyed



Thread pools

If a dedicated processing thread isn’t the ideal fit, an
alternative is a pool of threads

1 The thread pool is created
2 The event handler receives an event
3 The event handler reposts the event as a task to the

thread pool
4 The event handler returns ready to receive a new

event
5 (sometime later) A thread from the pool runs the task
6 The thread then waits for a new task

7 (eventually) The thread pool is destroyed



Thread pools

If a dedicated processing thread isn’t the ideal fit, an
alternative is a pool of threads

1 The thread pool is created
2 The event handler receives an event
3 The event handler reposts the event as a task to the

thread pool
4 The event handler returns ready to receive a new

event
5 (sometime later) A thread from the pool runs the task
6 The thread then waits for a new task
7 (eventually) The thread pool is destroyed



Thread pools: upsides

Upsides to thread pools:

The tasks are self-contained so easy to design and
test

The number of threads can be scaled with the
available hardware
The threads can be shared with the rest of the
application



Thread pools: upsides

Upsides to thread pools:

The tasks are self-contained so easy to design and
test
The number of threads can be scaled with the
available hardware

The threads can be shared with the rest of the
application



Thread pools: upsides

Upsides to thread pools:

The tasks are self-contained so easy to design and
test
The number of threads can be scaled with the
available hardware
The threads can be shared with the rest of the
application



Thread pools: downsides

Downsides to thread pools:

The tasks are run in an arbitrary order as they are
picked up by the pool

The handling of the event is disconnected from the
event
The tasks may be run concurrently, so their
interactions need to be verified
Tasks may be delayed due to tasks submitted from
elsewhere in the application
Cancelling all the tasks from one source without
affecting others is harder



Thread pools: downsides

Downsides to thread pools:

The tasks are run in an arbitrary order as they are
picked up by the pool
The handling of the event is disconnected from the
event

The tasks may be run concurrently, so their
interactions need to be verified
Tasks may be delayed due to tasks submitted from
elsewhere in the application
Cancelling all the tasks from one source without
affecting others is harder



Thread pools: downsides

Downsides to thread pools:

The tasks are run in an arbitrary order as they are
picked up by the pool
The handling of the event is disconnected from the
event
The tasks may be run concurrently, so their
interactions need to be verified

Tasks may be delayed due to tasks submitted from
elsewhere in the application
Cancelling all the tasks from one source without
affecting others is harder



Thread pools: downsides

Downsides to thread pools:

The tasks are run in an arbitrary order as they are
picked up by the pool
The handling of the event is disconnected from the
event
The tasks may be run concurrently, so their
interactions need to be verified
Tasks may be delayed due to tasks submitted from
elsewhere in the application

Cancelling all the tasks from one source without
affecting others is harder



Thread pools: downsides

Downsides to thread pools:

The tasks are run in an arbitrary order as they are
picked up by the pool
The handling of the event is disconnected from the
event
The tasks may be run concurrently, so their
interactions need to be verified
Tasks may be delayed due to tasks submitted from
elsewhere in the application
Cancelling all the tasks from one source without
affecting others is harder



Addressing thread pool downsides

The biggest downside from thread pools is the
unpredictable ordering.

We can impose an ordering with continuations.

If task B is a continuation of task A, it cannot run
concurrently.



Addressing thread pool downsides

The biggest downside from thread pools is the
unpredictable ordering.

We can impose an ordering with continuations.

If task B is a continuation of task A, it cannot run
concurrently.



Addressing thread pool downsides

The biggest downside from thread pools is the
unpredictable ordering.

We can impose an ordering with continuations.

If task B is a continuation of task A, it cannot run
concurrently.



Continuations

thread_pool pool;
std::optional<task_handle> last_task;

void handle_event(Event details){
auto func=[=]{process_event(details);};

if(last_task){
last_task=last_task->then(func);

} else {
last_task=pool.submit(func);

}
}



Continuations: upsides

Upsides of using continuations like this:

Events are handled in the order they arrive
Events are not handled concurrently

No concurrency: lengthy tasks delay subsequent event
processing



Continuations: upsides

Upsides of using continuations like this:

Events are handled in the order they arrive

Events are not handled concurrently

No concurrency: lengthy tasks delay subsequent event
processing



Continuations: upsides

Upsides of using continuations like this:

Events are handled in the order they arrive
Events are not handled concurrently

No concurrency: lengthy tasks delay subsequent event
processing



Continuations: upsides

Upsides of using continuations like this:

Events are handled in the order they arrive
Events are not handled concurrently

No concurrency: lengthy tasks delay subsequent event
processing



Continuations: upsides

Upsides of using continuations like this:

Events are handled in the order they arrive
Events are not handled concurrently

No concurrency: lengthy tasks delay subsequent event
processing



Continuations: downsides

Downsides of using continuations like this:

No concurrency: lengthy tasks delay subsequent
event processing
Still no fix for other problems: cancellation,
disconnect from event and handling, etc.



Continuations: downsides

Downsides of using continuations like this:

No concurrency: lengthy tasks delay subsequent
event processing

Still no fix for other problems: cancellation,
disconnect from event and handling, etc.



Continuations: downsides

Downsides of using continuations like this:

No concurrency: lengthy tasks delay subsequent
event processing
Still no fix for other problems: cancellation,
disconnect from event and handling, etc.



Cancellation



Cancellation

Later events may require you to cancel tasks submitted to
handle earlier events.

This is particularly the case for long-running tasks.

We need to avoid dangling tasks where the task outlives
the desire for it to do anything.



Cancellation: Stop tokens

Pass a std::stop_token to each task that may need to
be cancelled.

Keep the corresponding std::stop_source in the
event handler.

Call source.request_stop() when the tasks need to
be stopped.



Cancellation: Waiting for cancelled tasks

Cancelled tasks may continue running for a short time.

⇒ You need to ensure they are stopped before cleaning
up the data

The simplest solution is a count of remaining tasks



Cancellation: Counting outstanding tasks

std::atomic<unsigned> pending_tasks;
std::stop_source source;

void handle_event(Event details){
++pending_tasks;
pool.submit(

[=,&pending_tasks,
stopper=source.get_token()]{

process_event(details,stopper);
if(!--pending_tasks)

pending_tasks.notify_all();
});

}



Cancellation: Counting outstanding tasks

Cancel the tasks in some event handler:

void cancel_tasks(){
source.request_stop();

}

Then wait for them when cleaning up (not in an event
handler!):

void wait_for_tasks(){
while(auto count=pending_tasks.load()){
pending_tasks.wait(count);

}
}



Cancellation: Counting outstanding tasks

Cancel the tasks in some event handler:

void cancel_tasks(){
source.request_stop();

}

Then wait for them when cleaning up (not in an event
handler!):

void wait_for_tasks(){
while(auto count=pending_tasks.load()){
pending_tasks.wait(count);

}
}



Progress Updates



Progress Updates

Background threads might need to update the event
thread with information.

Progress updates in a GUI
Updating other UI information
Initiating IO on an IO loop



Progress Updates

Background threads might need to update the event
thread with information.

Progress updates in a GUI

Updating other UI information
Initiating IO on an IO loop



Progress Updates

Background threads might need to update the event
thread with information.

Progress updates in a GUI
Updating other UI information

Initiating IO on an IO loop



Progress Updates

Background threads might need to update the event
thread with information.

Progress updates in a GUI
Updating other UI information
Initiating IO on an IO loop



Progress Updates

Typically you need to trigger an event on the event thread.

Custom Windows messages
Using eventfd to create a file handle for events
Similar mechanism for other platforms



Progress Updates

Background thread:

void foo(unsigned progress){
post_progress_event(progress);

}

Event loop:

void handle_progress(ProgressEvent ev){
update_ui(ev.progress);

}



Coroutines



Coroutines

Coroutines are not a magical solution.

... but they can provide simpler-looking code



Coroutines

Coroutines are not a magical solution.

... but they can provide simpler-looking code



Coroutines: example

void handle_event(Event details){
schedule_on(thread_pool,process(details));

}

task<void> process(Event details){
co_await step_1(details)
co_await schedule_on_gui_thread(

update_progress(1));
co_await step_2(details)
co_await schedule_on_gui_thread(

update_progress(2));
// ...

}



Guidelines



Guidelines

Do not run time consuming tasks on threads that
must be responsive
Use a dedicated thread for long running tasks
Use a thread pool for other tasks
Use std::stop_token or similar for cancellation
Ensure tasks are finished before destroying data they
reference
Check whether you need lock-free code or just
short-lived locks



Questions?



My Book

C++ Concurrency in Action
Second Edition

Covers C++17 and the
Concurrency TS

cplusplusconcurrencyinaction.com

https://www.cplusplusconcurrencyinaction.com


Just::Thread Pro

just::thread Pro provides an actor framework, a concurrent
hash map, a concurrent queue, synchronized values and a

complete implementation of the C++ Concurrency TS, including
a lock-free implementation of atomic_shared_ptr and RCU.

http://stdthread.co.uk

http://stdthread.co.uk

