
Concurrent Thinking

Anthony Williams

Just Software Solutions Ltd
https://www.justsoftwaresolutions.co.uk

23rd April 2016

https://www.justsoftwaresolutions.co.uk


Concurrent Thinking

What is Concurrent Thinking?
Race conditions
Synchronization tools
Designing for concurrency — Concurrent
Thinking in practice

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


What is Concurrent Thinking?



What is Concurrent Thinking?

Concurrent Thinking
The mindset and thought processes used for
analysing and designing systems with multiple
concurrent execution streams.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Essential Aspects of Concurrent Thinking

Which processing can be done
independently?

What are the interactions between execution
streams?
Is access to shared state correctly
synchronized?
Is there a potential for race conditions?

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Essential Aspects of Concurrent Thinking

Which processing can be done
independently?
What are the interactions between execution
streams?

Is access to shared state correctly
synchronized?
Is there a potential for race conditions?

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Essential Aspects of Concurrent Thinking

Which processing can be done
independently?
What are the interactions between execution
streams?
Is access to shared state correctly
synchronized?

Is there a potential for race conditions?

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Essential Aspects of Concurrent Thinking

Which processing can be done
independently?
What are the interactions between execution
streams?
Is access to shared state correctly
synchronized?
Is there a potential for race conditions?

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Race Conditions



Race Conditions

Race Condition
A situation in which the behaviour of a system
with concurrent execution streams depends on
the relative speeds of processing or the
scheduling of those execution streams.

Race conditions may be problematic or
benign.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Benign Race Condition

void func(int num){
char buffer[20];
sprintf(buffer,"thread %i\n",num);
std::cout<<buffer;

}

int main(){
std::thread t1(func,1);
std::thread t2(func,2);
t1.join(); t2.join();

}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Benign Race Condition

The output is:

thread 1
thread 2

or

thread 2
thread 1

Either is OK, so this is benign.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Data Races

Data Race
A problematic race condition where a write to
some non-atomic shared data from one
execution stream races with any access to that
shared data from another execution stream
without synchronization.

Data races are always undefined behaviour.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Data Races

unsigned i=0;
void func()
{

for(unsigned c=0;c<2000000;++c)
++i;

for(unsigned c=0;c<2000000;++c)
--i;

}
int main(){
std::thread t1(func),t2(func);
t1.join(); t2.join();
std::cout<<"Final i="<<i<<std::endl;

}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Data Races

Final i=0

Final i=4294345393

Final i=169708

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Data Races

Final i=0

Final i=4294345393

Final i=169708

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Undefined Behaviour

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Synchronization Tools



Synchronization Tools

In C++, we have several tools at our disposal to
synchronize data:

Mutexes and condition variables
Futures
Latches and Barriers
Atomic types
Third party tools — thread pools, actor
libraries, concurrent data structures etc.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Mutexes

Mutex: Mutual Exclusion

A mutex is a means of preventing concurrent
execution.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Mutexes

Thread 1 Thread 2
Lock mutex m Lock mutex m
succeeds blocks
Do stuff
Unlock mutex m

unblocked
lock operation returns
Do stuff
Unlock mutex m

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Condition Variables

std::condition_variable is a notification
mechanism to avoid busy waits.

Spurious wakes are a BIG source of bugs.

Missed notifications are also a BIG source of
bugs.

You need to write your code to work if none of
the functions do anything, and if the notifications
only wake the minimum threads they have to.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Condition Variables

std::condition_variable is a notification
mechanism to avoid busy waits.

Spurious wakes are a BIG source of bugs.

Missed notifications are also a BIG source of
bugs.

You need to write your code to work if none of
the functions do anything, and if the notifications
only wake the minimum threads they have to.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Condition Variables

std::condition_variable is a notification
mechanism to avoid busy waits.

Spurious wakes are a BIG source of bugs.

Missed notifications are also a BIG source of
bugs.

You need to write your code to work if none of
the functions do anything, and if the notifications
only wake the minimum threads they have to.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Condition Variables

std::condition_variable is a notification
mechanism to avoid busy waits.

Spurious wakes are a BIG source of bugs.

Missed notifications are also a BIG source of
bugs.

You need to write your code to work if none of
the functions do anything, and if the notifications
only wake the minimum threads they have to.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Spurious Wakes

std::mutex m;
std::condition_variable cv;
int data;

void process(int);
void foo(){

std::unique_lock<std::mutex> lk(m);
cv.wait(lk);
process(data);

}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Spurious Wakes

std::mutex m;
std::condition_variable cv;
int data;

void process(int);
void foo(){

std::unique_lock<std::mutex> lk(m);
lk.unlock(); lk.lock();
process(data);

}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Missed Wakes

std::atomic<bool> done(false);
void foo(){

std::unique_lock<std::mutex> lk(m);
cv.wait(lk,[]{return done.load();});
process(data);

}
void signal_ready(){

done=true; cv.notify_one();
}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Missing Wakes

Thread 1 Thread 2
Calls signal_ready() Calls foo()

Locks m
Reads done
returns false

done=true Suspended by scheduler
cv.notify_one()

Woken by scheduler
Blocks on cv
Wakeup missed

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Missed Wakes

void foo(){
std::unique_lock<std::mutex> lk(m);
cv.wait(lk,[]{return done.load();});
process(data);

}
void signal_ready(){

done=true;
m.lock(); m.unlock();
cv.notify_one();

}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Missing Wakes

Thread 1 Thread 2
Calls signal_ready() Calls foo()

Locks m
Reads done
returns false

done=true Suspended by scheduler
m.lock() blocks waiting for
thread 2

Woken by scheduler
Blocks on cv and unlocks m

unblocked
cv.notify_one()

Wakeup seen

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Futures

Futures provide a one-shot synchronization
mechanism.

One thread provides the data via
std::promise, std::packaged_task, or
std::async.

Other threads get the data via std::future or
std::shared_future.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Futures

std::promise<MyData> prom;
std::future<MyData> f=prom.get_future();

Thread 1 Thread 2
do_stuff(fut.get())
blocks

prom.set_value(foo())
unblocked
get() returns
do_stuff() called

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Futures in the Concurrency TS

The Concurrency TS extends C++11 futures in
two ways:

Continuations — you may specify a task to
run when the future becomes ready with
fut.then()

Waiting for collections — you can wait for
one of a set of futures to become ready with
when_any, or all of them to become ready
with when_all

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Continuations and std::future

A continuation is a new task to run when a
future becomes ready
Continuations are added with the new then
member function
Continuation functions must take a
std::future as the only parameter
The source future is no longer valid()
Only one continuation can be added

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Continuations and std::future

int find_the_answer();
std::string process_result(

std::future<int>);
auto f=std::async(find_the_answer);
auto f2=f.then(process_result);

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


when_any

when_any is ideal for:
Waiting for speculative tasks
Waiting for first results before doing further
processing

auto f1=std::async(foo);
auto f2=std::async(bar);
auto f3=when_any(

std::move(f1),std::move(f2));
f3.then(baz);

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


when_all

when_all is ideal for waiting for all subtasks
before continuing. Better than calling wait()
on each in turn:

auto f1=std::async(subtask1);
auto f2=std::async(subtask2);
auto f3=std::async(subtask3);
auto results=when_all(

std::move(f1),std::move(f2),
std::move(f3)).get();

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Concurrency TS latches and barriers

latch is a single-use count-down: once the
count reaches zero it is permanently
signalled.
barrier and flex_barrier are reusable
count-downs: once the count reaches zero,
the barrier is signalled and the count reset.

Both latches and barriers allow threads to wait
until the latch or barrier is signalled.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Atomic types

std::atomic<T> provides an atomic type that can store
objects of type T.

T can be a built in type, or a class type of any size
T must be trivially copyable
compare_exchange_xxx operations require that you can
compare T objects with memcmp
std::atomic<T> may not be lock free — especially for
large types

std::atomic_flag provides a guaranteed-lock-free flag
type.
The Concurrency TS provides atomic_shared_ptr and
atomic_weak_ptr.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Atomic Operations

General ops
load(), store(), exchange(),
compare_exchange_weak(),
compare_exchange_strong()
=

Arithmetic ops for atomic<Integral> and atomic<T*>
fetch_add(), fetch_sub()
++, --, +=, -=

Bitwise ops for atomic<Integral>
fetch_and(), fetch_or(), fetch_xor()
&=, |=, ^=

Flag ops for atomic_flag
test_and_set(), clear()

MAY NOT BE LOCK FREE

GUARANTEED LOCK FREE

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Atomic Operations

General ops
load(), store(), exchange(),
compare_exchange_weak(),
compare_exchange_strong()
=

Arithmetic ops for atomic<Integral> and atomic<T*>
fetch_add(), fetch_sub()
++, --, +=, -=

Bitwise ops for atomic<Integral>
fetch_and(), fetch_or(), fetch_xor()
&=, |=, ^=

Flag ops for atomic_flag
test_and_set(), clear()

MAY NOT BE LOCK FREE

GUARANTEED LOCK FREE
Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Designing for Concurrency



Designing for Concurrency: Key Questions

Which processing can be done
independently?
Which threads might be touching the same
data?
At what level should the accesses be
synchronized?

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Independent Processing

Independent processing means:

No synchronization
No problematic race conditions
Simpler code

We want as much independent processing as
possible.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Which threads might be touching the same data?

This is applicable at all levels of an application.

The granularity of the data varies with the code
granularity.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


At what level should the accesses be synchronized?

This is a question of size.

Large chunks ⇒ more independent
processing, less synchronization. Larger
latencies.

small chunks ⇒ less independent processing,
more synchronization. Smaller latencies.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Analysing concurrent accesses

To check for correctness we need to analyse
concurrent accesses by separate threads.

The fewer such threads there are, the easier
this is.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Analysing concurrent accesses

We need to think about:

Which data each thread accesses
What values are read
What is guaranteed (or not) to be visible to
each thread
All the possible places a thread can be
suspended
What reorderings the compiler or processor
might do

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Analysing concurrent accesses

I use sequence tables with one column per
thread:
Thread 1 Thread 2
Lock mutex a Lock mutex b
Lock mutex b Lock mutex a

Blocked waiting for
thread 2

Blocked waiting for
thread 1

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Analysing a queue

Consider a queue with the same interface as
std::queue:

class concurrent_queue{
public:

void push(DataType v);
bool empty() const;
DataType front();
void pop();

};

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Analysing a queue

If more than one thread can call pop(), this
queue is broken at the interface.

It doesn’t matter what synchronization is used
internally.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Analysing a queue

Consider multiple threads calling foo:

concurrent_queue q;
void foo(){

if(!q.empty()){
auto data=q.front();
q.pop();
process(data);

}
}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Analysing a queue

Thread 1 Thread 2
if(!q.empty()) if(!q.empty())
returns false returns false
auto data=q.front() auto data=q.front()
The same data element is re-
trieved in both threads
q.pop() q.pop()
Two elements are popped

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Avoiding racy interfaces

The solution is to adjust the interface, and group
the operations that must be indivisible.

bool try_pop(DataType& popped_value);

or

DataType blocking_pop();

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Analysing thread interactions

Sequence tables are easily extensibly to N
threads.

Can incorporate out-of-order execution and
delayed visibility ⇒ annotate with loaded values.

Can leave a column with blank entries to
indicate “not running” states, where the thread is
suspended by the scheduler.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Analysing thread interactions: progress rates

A key thing to remember: each sequence table
is only one possible execution.

Each thread may progress faster or slower
than you expect

⇒ Add or remove empty rows in each column
and consider the consequences.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Analysing thread interactions: data visibility

If one thread loads a value written by another
thread, consider what other options there are.

Write a sequence table for each possibility.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Racy references

future<MyData> foo(ParamType p){
auto f=async([&]{
return get_part1(p);

});
auto part2=get_part2(p);
return f.then([&](auto part1){
return combine(

part1.get(),part2);
});

}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Racy references

future<MyData> foo(ParamType p){
auto f=async([&]{
return get_part1(p);

});
auto part2=get_part2(p);
return f.then([&](auto part1){
return combine(

part1.get(),part2);
});

}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Racy references

Dangling pointers and references are easier to
get in concurrent code.

They may not show up in testing due to
scheduling.

Pay particular attention to object lifetimes with
concurrent code.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Racy references

Dangling pointers and references are easier to
get in concurrent code.

They may not show up in testing due to
scheduling.

Pay particular attention to object lifetimes with
concurrent code.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Racy references

Dangling pointers and references are easier to
get in concurrent code.

They may not show up in testing due to
scheduling.

Pay particular attention to object lifetimes with
concurrent code.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Guidelines



Essential Aspects of Concurrent Thinking

Which processing can be done
independently?
What are the interactions between execution
streams?
Is access to shared state correctly
synchronized?
Is there a potential for race conditions?

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Guidelines

Keep threads independent where possible
Where interactions are necessary, specify
the interactions carefully
Take full advantage of the synchronization
facilities available
Use sequence tables to analyse the
behaviour of concurrent threads and avoid
problematic race conditions

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


Questions?



Just::Thread

just::thread provides a complete implementation of the
C++14 thread library and the C++ Concurrency TS.

Just::Thread Pro gives you actors, concurrent hash maps,
concurrent queues and synchronized values.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://www.justsoftwaresolutions.co.uk


My Book

C++ Concurrency in Action:
Practical Multithreading
http://stdthread.com/book

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

http://stdthread.com/book
https://www.justsoftwaresolutions.co.uk


Picture credits

The images listed below are from the specified source, with the specified license. All other images are copyright Just Software
Solutions Ltd, licensed under Creative Commons Attribution ShareAlike 4

Army 10 Miler: https://flic.kr/p/8MPbEW, U.S. Army photo by Tim Hipps — Creative Commons Attribution 2
Burnt Server:
http://commons.wikimedia.org/wiki/File:Backup_Backup_Backup_-_And_Test_Restores.jpg by
John — Creative Commons Attribution 2
Brain Neurons: https://flic.kr/p/6PKTHD, Fotis Bobolas — Creative Commons Attribution ShareAlike 2
Synchronized Clocks: https://flic.kr/p/bY1SU5 by Pete — Public Domain
Success sign: https://commons.wikimedia.org/wiki/File:Success_sign.jpg by Keith Ramsey
(RambergMediaImages), Creative Commons Attribution ShareAlike 2
Flowchart: https://flic.kr/p/8nXUr2 by Kevin Gilmour, Creative Commons Attribution 2

Creative Commons Attribution ShareAlike 2: https://creativecommons.org/licenses/by-sa/2.0/
Creative Commons Attribution ShareAlike 4: https://creativecommons.org/licenses/by-sa/4.0/
Creative Commons Attribution 2: https://creativecommons.org/licenses/by/2.0/

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrent Thinking

https://flic.kr/p/8MPbEW
http://commons.wikimedia.org/wiki/File:Backup_Backup_Backup_-_And_Test_Restores.jpg
https://flic.kr/p/6PKTHD
https://flic.kr/p/bY1SU5
https://commons.wikimedia.org/wiki/File:Success_sign.jpg
https://flic.kr/p/8nXUr2
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by/2.0/
https://www.justsoftwaresolutions.co.uk

