


Designing For Concurrency Using
Message Passing

Why use message passing?
Message passing frameworks
Design Guidelines
Examples



Why use message passing?



The Hook

Eliminate all your concurrency bugs!



The Reality

You can:

Eliminate explicit synchronization
Eliminate OS-level deadlock
Eliminate data races



The Reality

You can:

Eliminate explicit synchronization

Eliminate OS-level deadlock
Eliminate data races



The Reality

You can:

Eliminate explicit synchronization
Eliminate OS-level deadlock

Eliminate data races



The Reality

You can:

Eliminate explicit synchronization
Eliminate OS-level deadlock
Eliminate data races



The Cost

In exchange, you must:

Use the framework for all synchronization
Avoid sharedmutable state
Change your design approach



The Cost

In exchange, you must:

Use the framework for all synchronization

Avoid sharedmutable state
Change your design approach



The Cost

In exchange, you must:

Use the framework for all synchronization
Avoid sharedmutable state

Change your design approach



The Cost

In exchange, you must:

Use the framework for all synchronization
Avoid sharedmutable state
Change your design approach



Remaining Problems
Problems still remain:

Still potential for race conditions
⇒Which message arrives first?
Still potential for message deadlock
⇒ Two elements expecting messages from each other
The potential for droppedmessages is a new problem
Still not a silver bullet



Remaining Problems
Problems still remain:

Still potential for race conditions
⇒Which message arrives first?

Still potential for message deadlock
⇒ Two elements expecting messages from each other
The potential for droppedmessages is a new problem
Still not a silver bullet



Remaining Problems
Problems still remain:

Still potential for race conditions
⇒Which message arrives first?
Still potential for message deadlock
⇒ Two elements expecting messages from each other

The potential for droppedmessages is a new problem
Still not a silver bullet



Remaining Problems
Problems still remain:

Still potential for race conditions
⇒Which message arrives first?
Still potential for message deadlock
⇒ Two elements expecting messages from each other
The potential for droppedmessages is a new problem

Still not a silver bullet



Remaining Problems
Problems still remain:

Still potential for race conditions
⇒Which message arrives first?
Still potential for message deadlock
⇒ Two elements expecting messages from each other
The potential for droppedmessages is a new problem
Still not a silver bullet



Message Passing Frameworks



What is a Message Passing
Framework?

Tooling that manages the delivery of
messages between independent

elements



Benefits of an MPF
Developers can focus on:

the content,
the targets, and
the processing

of messages, rather than the delivery mechanism.



Benefits of an MPF
Developers can focus on:

the content,

the targets, and
the processing

of messages, rather than the delivery mechanism.



Benefits of an MPF
Developers can focus on:

the content,
the targets, and

the processing

of messages, rather than the delivery mechanism.



Benefits of an MPF
Developers can focus on:

the content,
the targets, and
the processing

of messages, rather than the delivery mechanism.



Benefits of an MPF
Developers can focus on:

the content,
the targets, and
the processing

of messages, rather than the delivery mechanism.



Microservices

AnMPF allows you to divide your application intomicroservices.

The API for eachmicroservice is the messages you can send it, and
the messages it sends.



Microservices

AnMPF allows you to divide your application intomicroservices.

The API for eachmicroservice is the messages you can send it, and
the messages it sends.



Guarantees on lack of reentrancy
AnMPF will usually guarantee that eachmicroservice only
processes onemessage at a time.

They may also guarantee that all messages for a given
microservice will be handled on the same thread.

Theymay give you control over whichmicroservices share a thread.



Guarantees on lack of reentrancy
AnMPF will usually guarantee that eachmicroservice only
processes onemessage at a time.

They may also guarantee that all messages for a given
microservice will be handled on the same thread.

Theymay give you control over whichmicroservices share a thread.



Guarantees on lack of reentrancy
AnMPF will usually guarantee that eachmicroservice only
processes onemessage at a time.

They may also guarantee that all messages for a given
microservice will be handled on the same thread.

Theymay give you control over whichmicroservices share a thread.



Delivery Mechanisms

The MPFmay give you a choice of delivery mechanism.

The mechanismmay be in-process, cross-process, or even
cross-network.

Ideally the microservice code will be isolated from that choice.



Delivery Mechanisms

The MPFmay give you a choice of delivery mechanism.

The mechanismmay be in-process, cross-process, or even
cross-network.

Ideally the microservice code will be isolated from that choice.



Delivery Mechanisms

The MPFmay give you a choice of delivery mechanism.

The mechanismmay be in-process, cross-process, or even
cross-network.

Ideally the microservice code will be isolated from that choice.



I’ve got a theory

In practice, widely available MPFs require you to write a lot of
boilerplate: you often have to write code to drive the message loop.

Abstract the boiler plate in a wrapper library or tool.



I’ve got a theory

In practice, widely available MPFs require you to write a lot of
boilerplate: you often have to write code to drive the message loop.

Abstract the boiler plate in a wrapper library or tool.



I’ve got a theory

In practice, widely available MPFs require you to write a lot of
boilerplate: you often have to write code to drive the message loop.

Abstract the boiler plate in a wrapper library or tool.



Design Guidelines



Focus

Eachmicroservice should be focused
on one task



Independence

Microservices should not overlap in
their functionality



Value Types

Messages should be value types



Avoid blocking

Replace blocking calls with separate
microservices



State Machines

Eachmicroservice can bemodelled as
a single-thread state machine



Examples



Example: Dining Philosophers



Example: Dining Philosophers
N philosophers sat round a table sharing a large plate of rice.
Each philosopher wants to alternate between thinking and eating.
There areN chopsticks around the table, with one between every pair of
philosophers.
All philosophers start thinking.
After a random length of time thinking, a philosopher will try and eat.
To eat, a philosopher must pick up the chopsticks either side. A philosopher cannot
eat without both chopsticks.
After a random length of time eating, a philosopher will put down both chopsticks
and think.



Actors for Dining Philosophers
We can create multiple actors:

An actor for each philosopher
An actor for I/O
An actor for Timing
An actor for the “server” responsible for managing the
chopsticks



The I/O Actor

The I/O actor just waits for incomingmessages with text to print out.

using OutputMessage = std::string;

void IO::OnMessage(OutputMessage msg) {
std::cout << msg << '\n';

}



The Timing Actor
The Timing actor is more involved. Incoming messages specify a
time and another actor:

struct TimerRequest {
std::chrono::steady_clock time;
messaging::sender target;

};

The Timing actor sends a TimerExpiredmessage to the target
at the appropriate time.



The Philosopher Actors

Each philosopher has 3 states: thinking,waiting for chopsticks and
eating.

In each state we can process a particular set of incoming
messages.



Philosopher States



A Thinking Philosopher
When the philosopher starts thinking, then we send amessage to
the I/O actor to say so, and to the Timing actor specifying when
they’re done thinking:

void Philosopher::OnThinking() {
auto thinking_time = random_duration();
io.Send(name + " thinking");
timing.Send(Clock::now() + thinking_time);

}



A Thinking Philosopher
When the timer expires, the philosopher is waiting for chopsticks:

void Philosopher::OnMessage(TimerExpired) {
if(current_state == states::thinking) {
io.Send(name + " finished thinking");
SetState(states::waiting_for_chopsticks);

}
}



A Hungry Philosopher
When the philosopher starts waiting for chopsticks, they must be
requested from the server, after sending amessage to the I/O
actor to be displayed:

void Philosopher::OnWaitingForChopsticks() {
io.Send(name + " waiting for chopsticks");
server.Send(RequestChopsticks{

left_chopstick, right_chopstick,
GetSelf()});

}



The philosopher gets chopsticks

When the philosopher gets chopsticks they start eating

void Philosopher::OnMessage(GotChopsticks) {
io.Send(name + " received chopsticks");
SetState(states::eating);

}



An Eating Philosopher
The philosopher eats for a random length of time, just like thinking,
so we send amessage to the Timing actor specifying when they’re
done eating:

void Philosopher::OnEating() {
auto eating_time = random_duration();
io.Send(name + " eating");
timing.Send(Clock::now() + eating_time);

}



A Full Philosopher
When the philosopher is done eating they hand in the chopsticks
and resume thinking.
void Philosopher::OnMessage(TimerExpired) {

if(current_state == states::thinking) {
// as before

} else if (current_state == states::eating) {
io.Send(name + " finished eating");
server.Send(ReturnChopsticks{

left_chopstick, right_chopstick});
SetState(states::thinking);

}
}



The Server Actor: Chopstick Requests
If chopsticks are requested, the server must hand them out, or add
the philosopher to a waiting list:

void Server::OnMessage(RequestChopsticks request){
if(ChopsticksAvailable(request)){
UseChopsticksAndNotify(request);

} else {
waiting_list.push_back(request);

}
}



The Server Actor: Returned Chopsticks
If chopsticks are returned, mark them free and check for waiting
philosophers:
void Server::OnMessage(ReturnChopsticks request){

MarkChopsticksAvailable(request);
for(auto req=waiting_list.begin();

req != waiting_list.end(); ) {
if(ChopsticksAvailable(*req)) {

UseChopsticksAndNotify(*req);
it = waiting_list.erase(it);

} else ++it;
}

}



The Server Actor: Using Chopsticks
Notifying philosophers about chopsticks is just another message:

void Server::UseChopsticksAndNotify(
RequestChopsticks request) {

chopstick_free[request.left_chopstick] = false;
chopstick_free[request.right_chopstick] = false;
request.philosopher.Send(GotChopsticks{});

}



Example: A robot control system



Example: A robot control system

Moving a robot requires coordinating movements of multiple parts,
each with their own actuator.

We want the control code for each actuator to run concurrently
with the coordination code and the code for other actuators.



Example: Moving a robot

We have actors for:

The central coordinator
Each actuator
Timing



The central coordinator
For each large-scale position the robot needs to be in, send
messages to the actuators with the steps:

void Coordinator::OnMessage(SetPositionFoo msg) {
SetState(states::waiting_for_position_foo);
actuator1.Send(SetPosition{Ac1FooPos, msg.target_time});
actuator2.Send(SetPosition{Ac2FooPos, msg.target_time});
actuator3.Send(SetPosition{Ac3FooPos, msg.target_time});
actuator4.Send(SetPosition{Ac4FooPos, msg.target_time});

}



Actuator actors
Each actuator has hardware-specific code to control it.

void Actuator1::OnMessage(SetPosition msg) {
hardware.StopMoving();
auto curpos = hardware.GetCurrentPosition();
auto delta = msg.position - curpos;
auto time_delta = msg.target_time - Clock::now();
if(delta) {
hardware.StartMoving({.speed = delta/time_delta});
timing.Send(TimerRequest{msg.target_time, GetSelf()});

}
}



Actuator actors

Notify the controller when target reached:

void Actuator1::OnMessage(TimerRequest) {
hardware.StopMoving();
controller.Send(Actuator1ReachedPosition{});

}



The central coordinator
For movement through a sequence of positions, add intermediate
states:

Waiting for Position 1
Waiting for Position 2
Waiting for Position 3

Addmessages for setting those positions, and notifying when they
are reached.



Central Coordinator States



Starting amovement sequence

Start a movement sequence by moving to the first position:

void Coordinator::OnMessage(TriggerMotionSequence1 msg) {
auto position1_time = Clock::now() + position1_duration;
SetState(states::waiting_for_position1);
GetSelf().Send(SetPosition1{position1_time});

}



Waiting to reach a position
As each actuator reaches position, check overall robot state:

void Coordinator::OnMessage(Actuator1ReachedPosition) {
switch(state) {
case states::waiting_for_position1:
if(ActuatorsReachedPosition1()) {

GetSelf().Send(Position1Reached{});
}
break;

// code for other states
}

}



Moving to the next position
When the robot is in the right position, move to the second position:

void Coordinator::OnMessage(Position1Reached) {
auto position2_time = Clock::now() + position2_duration;
SetState(states::waiting_for_position2);
GetSelf().Send(SetPosition2{position2_time});

}



More robot states

For complex movements andmultiple sequences, the state map
can get large.

Making the state machine table driven canmake this easier.

This is just classic state machine processing.



More robot states

For complex movements andmultiple sequences, the state map
can get large.

Making the state machine table driven canmake this easier.

This is just classic state machine processing.



More robot states

For complex movements andmultiple sequences, the state map
can get large.

Making the state machine table driven canmake this easier.

This is just classic state machine processing.



Summary



Summary
AMessage Passing Framework allows you to focus on the
messages rather than delivery

AnMPF can eliminate explicit synchronization
Eachmicroservice should be focused on one task
Microservices should have minimal overlap in their
responsibilities
Messages should be value types
Replace blocking calls with separate microservices
Eachmicroservice can bemodelled as a single-thread state
machine



Summary
AMessage Passing Framework allows you to focus on the
messages rather than delivery
AnMPF can eliminate explicit synchronization

Eachmicroservice should be focused on one task
Microservices should have minimal overlap in their
responsibilities
Messages should be value types
Replace blocking calls with separate microservices
Eachmicroservice can bemodelled as a single-thread state
machine



Summary
AMessage Passing Framework allows you to focus on the
messages rather than delivery
AnMPF can eliminate explicit synchronization
Eachmicroservice should be focused on one task

Microservices should have minimal overlap in their
responsibilities
Messages should be value types
Replace blocking calls with separate microservices
Eachmicroservice can bemodelled as a single-thread state
machine



Summary
AMessage Passing Framework allows you to focus on the
messages rather than delivery
AnMPF can eliminate explicit synchronization
Eachmicroservice should be focused on one task
Microservices should have minimal overlap in their
responsibilities

Messages should be value types
Replace blocking calls with separate microservices
Eachmicroservice can bemodelled as a single-thread state
machine



Summary
AMessage Passing Framework allows you to focus on the
messages rather than delivery
AnMPF can eliminate explicit synchronization
Eachmicroservice should be focused on one task
Microservices should have minimal overlap in their
responsibilities
Messages should be value types

Replace blocking calls with separate microservices
Eachmicroservice can bemodelled as a single-thread state
machine



Summary
AMessage Passing Framework allows you to focus on the
messages rather than delivery
AnMPF can eliminate explicit synchronization
Eachmicroservice should be focused on one task
Microservices should have minimal overlap in their
responsibilities
Messages should be value types
Replace blocking calls with separate microservices

Eachmicroservice can bemodelled as a single-thread state
machine



Summary
AMessage Passing Framework allows you to focus on the
messages rather than delivery
AnMPF can eliminate explicit synchronization
Eachmicroservice should be focused on one task
Microservices should have minimal overlap in their
responsibilities
Messages should be value types
Replace blocking calls with separate microservices
Eachmicroservice can bemodelled as a single-thread state
machine



My Book
C++ Concurrency in Action

Second Edition

Covers C++17 and the
first Concurrency TS

C++20 Addendum coming soon!

cplusplusconcurrencyinaction.com

https://www.cplusplusconcurrencyinaction.com


Questions?



Message passing frameworks

Some Choices:

ZeroMQ
CAF—The C++ Actor Framework
The actor framework frommy book
You can write your own.


	Why use message passing?
	Message Passing Frameworks
	Design Guidelines
	Examples
	Example: Dining Philosophers
	Example: A robot control system
	Summary
	Questions?

