
Concurrency, Parallelism and Coroutines

Anthony Williams

Just Software Solutions Ltd
https://www.justsoftwaresolutions.co.uk

29th April 2017

https://www.justsoftwaresolutions.co.uk


Concurrency, Parallelism and Coroutines

Parallelism in C++17
The Coroutines TS
The Concurrency TS
Coroutines and Parallel algorithms
Executors

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Aside: TS namespace

The TS’s provides functions and classes in the
std::experimental namespace.

In the slides I’ll use stdexp instead, as it’s
shorter.

namespace stdexp=std::experimental;

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Parallelism in C++17



Parallelism in C++17

C++17 provides a new set of overloads of the
standard library algorithms with an execution
policy parameter:

template<typename ExecutionPolicy,
typename Iterator,
typename Function>

void for_each(
ExecutionPolicy&& policy,
Iterator begin,Iterator end,
Function f);

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Execution Policies

The execution policy may be:
std::execution::seq

Sequential execution on the calling thread
std::execution::par

Indeterminately sequenced execution on
unspecified threads

std::execution::par_unseq
Unsequenced execution on unspecified
threads

Plus any implementation-defined policies.
Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Supported algorithms

The vast majority of the C++ standard algorithms are
parallelized:
adjacent_find all_of any_of copy_if copy_n copy count_if count equal
exclusive_scan fill_n fill find_end find_first_of find_if_not find_if
find for_each_n for_each generate_n generate includes inclusive_scan
inplace_merge is_heap is_heap_until is_partitioned is_sorted_until
is_sorted lexicographical_compare max_element merge min_element
minmax_element mismatch move none_of nth_element partial_sort_copy
partial_sort partition_copy partition reduce remove_copy_if
remove_copy remove_if remove replace_copy_if replace_copy replace
replace_if reverse_copy reverse rotate_copy rotate search_n search
set_difference set_intersection set_symmetric_difference set_union
sort stable_partition stable_sort swap_ranges transform
transform_inclusive_scan transform_exclusive_scan transform_reduce
uninitialized_copy_n uninitialized_copy uninitialized_fill_n
uninitialized_fill unique_copy unique

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Using Parallel algorithms

Just add an execution policy:

std::sort(std::execution::par,
range.begin(),range.end());

It is up to you to ensure thread safety.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Thread Safety for Parallel Algorithms

std::execution::seq
No additional thread-safety requirements

std::execution::par
Applying operations on separate objects
must be thread-safe

std::execution::par_unseq
Operations must be thread-safe and not
need any synchronization; may be
interleaved, and may switch threads.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Parallel Algorithms and Exceptions

Throwing an exception in a parallel algorithm
will call std::terminate.

This applies for all 3 standard execution policies
(even std::execution::seq).

Implementation provided extension policies may
provide different behaviour.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Parallelism made easy!

“Just” add std::execution::par as the first
parameter to standard algorithm calls.

std::sort(std::execution::par,v.begin(),v.end());
std::transform(
std::execution::par,
v.begin(),v.end(),v2.begin(),process);

However, as with all optimizations: measure.
Parallelism has overhead, and some things are
not worth parallelizing.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Technical Specification for C++
Extensions for Coroutines



What is a Coroutine?

A coroutine is a function that can be
suspended mid execution and resumed at a
later time.

Resuming a coroutine continues from the
suspension point; local variables have their
values from the original call.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Stackful vs Stackless coroutines

Stackful coroutines
The entire call stack is saved

Stackless coroutines
Only the locals for the current function are
saved

The Coroutines TS only provides stackless
coroutines.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Advantages of Stackless Coroutines

Everything is localized
Minimal memory allocation — can have
millions of in-flight coroutines
Whole coroutine overhead can be eliminated
by the compiler — Gor’s “disappearing
coroutines”

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Disadvantages of Stackless Coroutines

Can only suspend coroutines — using
co_await means the current function must
be a coroutine
Can only suspend current function —
suspension returns to caller rather than
suspending caller too

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


co_keywords make coroutines

A coroutine is a function that:

contains at least one expression using one
of the co_await, co_yield, or
co_return keywords, and
returns a type with corresponding coroutine
promise.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


co_keywords

co_return some-value
Return a final value from the coroutine

co_await some-awaitable
Suspend this coroutine if the awaitable
expression is not ready

co_yield some-value
Return an intermediate value from the
coroutine; the coroutine can be reentered at
the next statement.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Promises and Awaitables

A coroutine promise type is a class that
handles creating the return value object from a
coroutine, and suspending the coroutine.

An awaitable type is something that a coroutine
can wait for with co_await.

Often, awaitables will have corresponding
coroutine promises, so you can return them
from a coroutine.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Simple Coroutines

future<int> simple_return(){
co_return 42;

}

generator<int> make_10_ints(){
for(int i=0;i<10;++i)
{

co_yield i;
}

}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Waiting for others

future<remote_data>
async_get_data(key_type key);

future<data> retrieve_data(
key_type key){
auto rem_data=

co_await async_get_data(key);
co_return process(rem_data);

}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Consuming generators

generator<int> make_10_ints();

void not_a_coroutine(){
for(auto& x:make_10_ints()){

do_stuff(x);
}

}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Coroutines and parallel algorithms

Stackless coroutines work best if everything is
a coroutine.

Implementations can use a custom execution
policy to make parallel algorithms coroutines.

auto f=std::for_each(
parallel_as_coroutine,
v.begin(),v.end(),do_stuff);

co_await f;

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Technical Specification for C++
Extensions for Concurrency



Concurrency TS v1

Continuations for futures
Waiting for one or all of a set of futures
Latches and Barriers
Atomic Smart Pointers

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Continuations and stdexp::future

A continuation is a new task to run when a
future becomes ready
Continuations are added with the new then
member function
Continuation functions must take a
stdexp::future as the only parameter
The source future is no longer valid()
Only one continuation can be added

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Continuations and stdexp::future

stdexp::future<int> find_the_answer();
std::string process_result(

stdexp::future<int>);

auto f=find_the_answer();
auto f2=f.then(process_result);

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Exceptions and continuations

stdexp::future<int> fail(){
return stdexp::make_exceptional_future(

std::runtime_error("failed"));
}
void next(stdexp::future<int> f){
f.get();

}
void foo(){
auto f=fail().then(next);
f.get();

}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Wrapping plain function continuations: lambdas

stdexp::future<int> find_the_answer();
std::string process_result(int);

auto f=find_the_answer();
auto f2=f.then(
[](stdexp::future<int> f){
return process_result(f.get());

});

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Wrapping plain function continuations: unwrapped

template<typename F>
auto unwrapped(F f){

return [f=std::move(f)](auto fut){
return f(fut.get());

};
}

stdexp::future<int> find_the_answer();
std::string process_result(int);

auto f=find_the_answer();
auto f2=f.then(unwrapped(process_result));

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


No stdexp::async — simple substitute

template<typename Func>
auto spawn_async(Func func){

stdexp::promise<
decltype(std::declval<Func>()())> p;

auto res=p.get_future();
std::thread t(
[p=std::move(p),f=std::move(func)]()
mutable{
p.set_value_at_thread_exit(f());

});
t.detach();
return res;

}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Continuations and stdexp::shared_future

Continuations work with
stdexp::shared_future as well
The continuation function must take a
stdexp::shared_future

The source future remains valid()
Multiple continuations can be added

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


stdexp::shared_future continuations

stdexp::future<int> find_the_answer();
void next1(stdexp::shared_future<int>);
int next2(stdexp::shared_future<int>);

auto fi=find_the_answer().share();
auto f2=fi.then(next1);
auto f3=fi.then(next2);

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Waiting for the first future to be ready

when_any waits for the first future in the
supplied set to be ready. It has two overloads:
template<typename ... Futures>
stdexp::future<stdexp::when_any_result<
std::tuple<Futures...>>>
when_any(Futures... futures);

template<typename Iterator>
stdexp::future<stdexp::when_any_result<
std::vector<

std::iterator_traits<Iterator>::
value_type>>>

when_any(Iterator begin,Iterator end);

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


when_any

when_any is ideal for:
Waiting for speculative tasks
Waiting for first results before doing further
processing

auto f1=foo();
auto f2=bar();
auto f3=when_any(
std::move(f1),std::move(f2));

f3.then(baz);

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Waiting for all futures to be ready

when_all waits for all futures in the supplied
set to be ready. It has two overloads:

template<typename ... Futures>
stdexp::future<std::tuple<Futures...>>
when_all(Futures... futures);

template<typename Iterator>
stdexp::future<std::vector<

std::iterator_traits<Iterator>::
value_type>>

when_all(Iterator begin,Iterator end);

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


when_all

when_all is ideal for waiting for all subtasks
before continuing. Better than calling wait()
on each in turn:

auto f1=spawn_async(subtask1);
auto f2=spawn_async(subtask2);
auto f3=spawn_async(subtask3);
auto results=when_all(

std::move(f1),std::move(f2),
std::move(f3)).get();

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Coroutines and Continuations



Combining stdexp::future and coroutines

Futures ideally suited for coroutines:

They hold a value
You can wait on them
They can represent asynchronous tasks
You can create a future that holds a value

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Returning stdexp::future from coroutines

To return a future, you need to specialize
stdexp::coroutine_traits to provide a
promise_type:

template <typename T>
struct coroutine_future_promise;

template <typename T, typename... Args>
struct stdexp::coroutine_traits<
stdexp::future<T>, Args...> {

using promise_type=coroutine_future_promise<T>;
};

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Returning stdexp::future from coroutines —
coroutine promise

3 parts to it:

Creating the return object
Specifying whether to suspend before/after coroutine
execution
Setting the value

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Waiting for futures in a coroutine

Waiting requires:

Suspending the coroutine
Telling the runtime how to resume the
coroutine
Obtaining the value when the coroutine is
resumed

We have to tell the compiler how to do this for
futures.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Waiting for futures — specifying the awaiter

Overload operator co_await to return an
awaiter that provides customizations for our
type:

template<typename T>
struct future_awaiter;

template<typename T>
auto operator co_await(stdexp::future<T>& f) {

return future_awaiter<T>{f};
}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Future unwrapping and coroutines

If futures work with coroutines, you can use a
coroutine as a continuation:
stdexp::future<result> my_coroutine(

stdexp::future<data> x){
auto res=co_await do_stuff(x.get());
co_return res;

}

stdexp::future<result> foo(){
auto f=spawn_async(make_data);
return f.then(my_coroutine);

}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Coroutines and Parallel
Algorithms



Parallel algorithms and blocking

For parallelism, we care about processor
utilization.

Blocking operations hurt:

They complicate scheduling
They occupy a thread
They force a context switch

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Parallel Algorithms and blocking: Coroutines to the
rescue

Coroutines allow us to turn blocking operations
into non-blocking ones:

co_await suspends current coroutine
Coroutine can be automatically resumed
when the waited-for thing is ready
Current thread can process another task

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Parallel Algorithms and stackless coroutines

If the suspension is in a nested call, a stackless
coroutine wait just moves the blocking up a
layer.

f() ⇒ g() ⇒ h()

If h() uses co_await to wait for a result,
execution resumes in g(), which will then need
to wait (and block) for the result of h(), and so
on.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Parallel Algorithms and stackless coroutines

Solution: Everything in the call stack must be
a coroutine

future<low_result> h(){
co_return process(co_await get_data());

}
future<mid_result> g(){
co_return process(co_await h());

}
future<result> f(){
co_return process(co_await g());

}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Parallel Algorithms and stackless coroutines

Parallel algorithms with coroutines can then look
like this:
future<result> parallel_func(data_type data){
auto divided_data=

co_await parallel_divide(data);
auto res1=

co_await parallel_func(divided_data.first);
auto res2=

co_await parallel_func(divided_data.second);
auto final_result=

co_await parallel_combine(res1,res2);
co_return final_result;

}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Executors



Grand Unified Executors

19 executors papers going back to 2012

Much discussion

Added to Concurrency TS working draft and
then removed

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


What is an executor?

This is the core issue: different use cases lead
to different approaches

Fundamental answer: something that controls
the execution of tasks.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Tasks?

What kind of tasks?
Where should they run?
What relationships are there between tasks?
Can tasks synchronize with each other?
Can they run concurrently?
Can they run interleaved?
Can they migrate between threads?
Can they spawn new tasks?
Can they wait for each other?

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Other questions

Are executors copyable?
Are they composable?
Can you get an executor from a task handle?
Can you get the executor for the currently-running task?

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


We want All The Things!

We want an executor framework that allows all
possible answers to these questions.

Individual executors will provide specific
answers to the questions.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Current Proposal

P0433R1: A Unified Executors Proposal for C++

MANY customization points

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Basic executor

The basic requirements are simple. Executors must:

be CopyConstructible,
be EqualityComparable,
provide a context() member function, and
provide an execute(f) member function or
execute(e,f) free function.

The framework can build everything else from there.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Execution Semantics

Three basic functions for executing tasks with an executor:

execute(e,f)
Execute f with e. May or may not block current task.

post(e,f)
Queue f for execution with e ASAP, without blocking
current task.

defer(e,f)
If currently running a task on e, queue f for execution
with e after current task has finished. Otherwise, same
as post(e,f).

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Returning values

sync_execute(e,f)
Execute f with e. Blocks until f completes, returns result
of invoking f.

async_post(e,f)
Execute f with e like post(e,f). Returns a future
which will hold the return value of f.

async_defer(e,f)
Execute f with e like defer(e,f). Returns a future
which will hold the return value of f.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Bulk execution and more

There are also functions to allow queuing
multiple functions at once, and for scheduling
continuations on executors.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Executors, Parallel Algorithms and Continuations

Implementations can provide an
ExecutionPolicy for executors. e.g.

std::sort(on_executor(e),
v.begin(),v.end());

It’s also natural to do the same for continuations:

f.then(on_executor(e),my_func);

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


Availability

No shipping implementations provide all of these.

Visual Studio 2015 implements the coroutines TS.
Clang has a coroutines TS implementation in the works.

HPX provides parallel algorithms and futures with
continuations from the Concurrency TS, as well as some
executor support (but not the same as P0433R1).

Just::Thread Pro provides the Concurrency TS for
gcc/clang/Visual Studio. Next version will have coroutines
integration and parallel algorithms.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

https://www.justsoftwaresolutions.co.uk


My Book

C++ Concurrency in Action:
Practical Multithreading,

Second Edition

Covers C++17 and the
Concurrency TS

Early Access Edition now
available

http://stdthread.com/book

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

http://stdthread.com/book
https://www.justsoftwaresolutions.co.uk


Just::Thread Pro

just::thread Pro provides an actor framework, a concurrent
hash map, a concurrent queue, synchronized values and a

complete implementation of the C++ Concurrency TS, including
a lock-free implementation of atomic_shared_ptr.

http://stdthread.co.uk

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Concurrency, Parallelism and Coroutines

http://stdthread.co.uk
https://www.justsoftwaresolutions.co.uk


Questions?


