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1 Introduction

C++ templates are a powerful mechanism for code reuse, as they enable the programmer to write code that
behaves the same for data of any type. Suppose you write a function printData:

void printData(int value)
{

std::cout<<"The value is "<<value<<std::endl;
}

If you later decide you also want to print double values, or std::string values, then you have to overload
the function:

void printData(double value)
{

std::cout<<"The value is "<<value<<std::endl;
}
void printData(std::string value)
{

std::cout<<"The value is "<<value<<std::endl;
}

The actual code written for the function is identical in each case; it is just the type of the variable value that
changes, yet we have to duplicate the function for each distinct type. This is where templates come in - they
enable the user to write the function once for any type of the variable value.

template<typename T>
void printData(T value)
{

std::cout<<"The value is "<<value<<std::endl;
}

That’s all there is to it1 - we can now use printData for any data that can be written to a std::ostream.
Here, the template<typename T> part tells the compiler that what follows is a template, and that T is a
template parameter that identifies a type. Then, anywhere in the function where T appears, it is replaced with
whatever type the function is instantiated for - e.g.:

1If we were really writing a generic function like this, we would probably pass the parameter as a const reference, rather than as
a value parameter to avoid copying large objects - the same applies to void printData(std::string value) above, it would be
more usual to write void printData(const std::string& value)
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int i=3;
double d=4.75;
std::string s("hello");
bool b=false;

printData(i); // T is int
printData(d); // T is double
printData(s); // T is std::string
printData(b); // T is bool

It is possible to write class templates as well as function templates like printData. A common example is
std::vector - you can specify a vector of integers, or of strings, or of some user-defined class, simply by
specifying the template parameter:

class MyClass{};

std::vector<int> vi; // contains ints
std::vector<double> vd; // contains doubles
std::vector<std::string> vs; // contains std::strings
std::vector<MyClass> vmc; // contains MyClass objects

2 Defining Templates

A Template Definition starts with the keyword template, followed by a list of Template Parameters (2.1). What
follows is then either a class definition, or a function definition, defining a class template or a function template
respectively.

The template parameters introduce names into the scope of the definition, which can be types, values or templates.
These names can be used just like any other name of the same kind. Then, when the template is instantiated,
real types, values or templates are substituted in place of these names, and the code compiled.

2.1 Template Parameters

Templates can have one or more template parameters, which can be

• Type parameters (2.1.1) (such as those in the introduction),

• Non-Type parameters (2.1.2) (e.g. an integer), or

• Template parameters (2.1.3).

Two template instantiations refer to the same template if their parameters are all the same, irrespective of any
typedefs that may apply. Therefore vec1, vec2 and vec3 in the following example are all the same type.

typedef std::string MyString;
typedef std::vector<std::string> T1;
typedef std::vector<MyString> T2;

T1 vec1;
T2 vec2;
std::vector<std::string> vec3;
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Multiple parameters may be specified, separated by commas in the template parameter list:

template<typename T1,typename T2>
class MyClass{};

MyClass is thus a class template with two template type parameters, T1 and T2

Every time a template is referenced with distinct template arguments, then the template is instantiated with the
arguments substituted as explained in the following sections. If the resultant code is not valid, then a compilation
error will occur.

2.1.1 Template Type Parameters

Template Type Parameters are template parameters that refer to a type; they are the most common form of
template parameters. The template parameter for printData in the introduction (1) is an example of a template
type parameter.

The syntax is simple:

typename name

or

class name

Both alternatives are identical in meaning, and the choice is merely a matter of style. name is any valid C++
symbol name. Once name has been introduced in the template parameter list, then any reference to name
within the body of the template automatically refers to the type of the corresponding template argument for each
instantiation, and can be used anywhere a type can normally be used. e.g.

template<typename T>
void func(T value)
{

const T& ref=value;
T* p=new T;
T temp(23);

}

The code generated for func<int> is then identical to:

void func(int value)
{

const int& ref=value;
int* p=new int;
int temp(23);

}

If, however, a reference was made to func<std::string>, then a compilation error would result, as the
statement

std::string temp(23);

is not valid.
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2.1.2 Template Non-Type Parameters

Non-Type Template Parameters are template parameters that are values rather than types. They can be any
value that is a compile-time constant 2. Their syntax is akin to a variable declaration, e.g.:

template<int i>
class A{};

template<double* dp>
class B{};

template<void (*func)(int)>
void c()
{}

Class template A has a non-type template parameter which is an integer, class template B has a non-type template
parameter which is a pointer-to-double, and function template c has a non-type template parameter which is a
pointer to a function returning void, with a single int parameter. Examples of uses are:

A<3> a3;
A<sizeof(std::string)> as;

double d; // at global scope
B<&d> bpd;
B<NULL> bn;

void myfunc(int);

struct MyClass
{

static void staticFunc(int);
};

int main()
{

c<&myfunc>();
c<&MyClass::staticFunc>();

}

Within the definition of the template, the name of the non-type template parameters refers to a constant of the
appropriate type, so given

template<int i>
void func()
{

std::cout<<i<<std::endl;
}

func<3>() will print 3, and func<999>() will print 999.
2A compile-time constant is something that can be evaluated at compile-time, such as an integer, or the address of a global

variable. There are restrictions on what can be a compile-time constant, e.g. floating point values can not be compile-time constants
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2.1.3 Template Template Parameters

Template Template Parameters enable a template to be parameterized by the name of another template. Say,
for example, that you have a class which contains a couple of collections of items, some strings, some integers,
and you want the users of your class to choose what type of collection to use (vector, list, stack, etc.). The
natural thought is to make the collection type a template parameter. However, a collection of strings is a different
type from a collection of integers, so the user would have to specify both individually if template type parameters
(2.1.1) are used. The solution is a Template Template Parameter :

template<template<typename T> class ContainerType>
class MyClass
{

ContainerType<int> intContainer;
ContainerType<std::string> stringContainer;
// rest of class

};

ContainerType is a Template Template Parameter that refers to a template with a single Template Type
Parameter. You can thus say MyClass<vector> or MyClass<list> to have vectors or lists respectively.3

Within the template definition, the Template Template Parameters can be used just like any other template.

2.2 Default Template Parameters

Just as functions can have default values for their arguments, so can templates - indeed, this facility works
in pretty much the same way. If a template parameter has a default specified, then all subsequent template
parameters must also have a default specified. When referencing a template, parameters with default values can
be omitted; if a template parameter is omitted, all subsequent template parameters must also be omitted. e.g.

template<typename T1,typename T2=int,int i=23>
class MyClass{};

// specify all parameters
MyClass<double,std::string,46> mc1;

// omit "i"
MyClass<std::string,double> mc2;

// same as above
MyClass<std::string,double,23> mc3;

// all default
MyClass<int> mc4;

// we must specify "T2" if we wish to specify "i"
MyClass<int,int,0> mc5;

The syntax for declaring a default value for a template parameter is simple just add ”= default-value” to the
parameter declaration, as shown in the example. If a template parameter is omitted when referencing the template,
then the default value is substituted instead.

3If you wish to use std::vector or std::list with a Template Type Parameter, then you have to take account of the additional
Allocator template parameter, even though it is very rarely specified explicitly.
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2.3 Dependent Names

A Dependent Name is any name within a template definition that depends on one or more of the template
parameters. This includes the template parameters themselves and other templates instantiated with template
arguments that are dependent names in the current expansion. Dependent names are important, because they are
only resolved when the template is instantiated. As a consequence of this, dependent names that are members of
types that are themselves dependent names are always assumed to name objects or functions rather than types,
unless preceded with the typename keyword. e.g.

struct X
{

int x;
typedef double Z;

};

struct Y
{

typedef int x;
double Z;

};

template<typename T>
struct ZZ
{

T::Z z1; // 1
typename T::Z z2; // 2

void func(T& t)
{

t.x=4; // 3
}

typedef typename std::vector<T>::iterator VecIt; // 4
};

int main()
{

X x;
Y y;
ZZ<X> zzx; // 5
ZZ<Y> zzy; // 6

zzx.func(x); // 7
zzy.func(y); // 8

}

The line marked 1 is illegal, as T::Z is assumed to refer to an object or function rather than a type. Line 2 is
the correct way of doing things. At line 3, t.x is a dependent name, but it refers to an object so this is OK.
At line 4, std::vector<T>::iterator is a dependent name that refers to a type, so we need the typename
keyword. Lines 5 and 6 instantiate the template for the types X and Y. Line 5 is OK, because X::Z is a type,
but line 6 is not, as Y::Z is an object. Lines 7 and 8 demonstrate the opposite - X::x is OK because it is an
object, but Y::x is a type, so the instantiation of ZZ<Y>::func will fail.

6



3 Using Templates

Class templates and function templates can be used anywhere normal classes and functions can be, as well as as
Template Template Parameters (2.1.3) to other templates. However, the compiler needs to know what to use for
the template parameters.

For class templates, the template name must be followed by a template argument list, specifying the parameters.
This is a comma-separated list of expressions between angle brackets (<>). For Template Type Parameters, the
corresponding expression must name a type, for Template Non-Type Parameters, the expression must evaluate
to a compile-time constant of the appropriate type, and for Template Template Parameters, the expression must
name a template with the correct signature. e.g.:

template<typename T,unsigned i>
struct FixedArray
{

T data[i];
};

FixedArray<int,3> a; // array of 3 integers
FixedArray<int,1+6/3> b; // array of 3 integers

template<template<typename T,typename Allocator> class Container>
struct ContainerPair
{

Container<int,std::allocator<int> > intContainer;
Container<std::string,std::allocator<std::string> > stringContainer;

};

ContainerPair<std::deque> deqCont; // two std::deques
ContainerPair<std::vector> vecCont; // two std::vectors

The second example demonstrates two things. Firstly, the template signature of the Template Template Parameter
(2.1.3) must exactly match the signature of the template passed as the argument, and standard containers have
two template parameters. Secondly, if the last argument of a template parameter list is a template reference, as
for Container<int,std::allocator<int> >, then the two closing angle brackets (>) must be separated
by a space, to avoid being interpreted as the shift right operator (>>).

For function templates, there are two options for specifying the template parameters. Firstly, the function name
can be followed by a template argument list as for class templates, e.g.:

template<typename T>
void func()
{}

int main()
{

func<int>();
func<double>();

}

The second alternative is for function template where one or more of the template parameters are used in the
function parameter list. In this case, it is possible to omit those template parameters from the template argument
list, as if they had a default value specified (2.2). e.g.:
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template<typename T>
void func(T value)
{}

template<typename T,typename U>
T func2(U value)
{

return T(value);
}

int main()
{

// T=int
func(3);

// T=double
func(3.5);

// T=int, U=double
func2<int>(3.5);

// T=std::vector<std::string>, U=int
func2<std::vector<std::string> >(5);

// specify both T and U
// T=std::vector<std::string>, U=int
func2<std::vector<std::string>,int>(5.7);

}

This Template Argument Deduction can be used to make life easier for the user of a function template, the same
way that function overloading makes life easier for the user of a normal function - the correct function instantiation
is automatically called based on the function arguments provided.

In some circumstances, Template Argument Deduction will fail, because there is an inconsistency caused during
deduction - if two parameters are declared to be the same type, and different types are passed, then the compiler
cannot deduce which to use. This often occurs with std::max:

int i=std::max(3,4.5);

The compiler cannot deduce whether to instantiate std::max<int>(int,int) or
std::max<double>(double,double), so it generates an error. The solution is to provide an explicit
template argument list, or cast one of the arguments so it is the same type as the other.

int i=std::max(static_cast<double>(3),4.5); // T=double
int j=std::max<int>(3,4.5); // T=int

Note also that the return type is not considered when deducing the template arguments in this way.

The Standard C++ Library contains a large number of templates, which is partly what makes it so powerful -
the Standard Library code can be successfully used with classes that didn’t exist when the Standard was written.
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3.1 Template Requirements and Concepts

Templates implicitly impose requirements on their parameters, particularly Template Type Parameters (2.1.1)
and Template Template Parameters (2.1.3). These requirements generally take the form of operations that must
work on objects of the appropriate type, or class members that must exist and refer to objects or types or functions
(with the implicit extra requirement that the type referred to is a class). A Concept is a set of requirements that
describe a useful feature of a type. For example, the C++ Standard Library makes reference to things being
Assignable or Copy-Constructible; these are Concepts that make the following requirements:

Given a type T, that type is Copy-Constructible if the expression

T a(b);

is defined, where b is an expression of type T, and the resultant object a has a value equivalent to the value of
the expression b.

That type is Assignable if the expression

a=b;

is defined, where a and b are expressions of type T, and the value of the object referred to by the expression a is
equivalent to the value of the object referred to by the expression b after the assignment.

All built-in types are both Copy-Constructible and Assignable. For classes, these requirements translate into
requirements on member functions:

A class T is Copy-Constructible if it has a constructor which can be called with one argument of type const-
reference-to-T. This may be a constructor with one argument, or it may be a constructor with more than one
argument, with default values provided for the remaining arguments. The object thus constructed should have a
value equivalent to that of the argument.4

A class T is Assignable if it defines a copy-assignment operator (operator=()) which has an argument of type
T, or const-reference-to-T. The object to which the member function belongs should have a value equivalent to
that of the argument after the completion of such a member function.5

As a consequence, the std::auto ptr template does not fulfil these requirements, as it exhibits transfer-
of-ownership semantics on copy-construction and assignment, and consequently the copy-constructor and copy-
assignment arguments are of type reference-to-T rather than const-reference-to-T.

It is possible to write Concept-checkers, templates which verify that a given type does indeed fulfil all the syntactic
requirements of a particular Concept, even if the current template doesn’t require all of them in its current
implementation. This also makes tracking down errors easier - the compilation error generated by a failure in
such a Concept-Checker is more obviously a failure of the parameter type to fulfil the concept requirements than
a failure elsewhere in the template definition.

It is possible that a class template may support different operations, depending on which of several concepts a
parameter type fulfils the requirements for. This is made possible by a feature of C++ class templates - member
functions of class templates are only instantiated if they are referenced. This means that a class template can have
a member function which only compiles if the template parameters fulfil a particular concept, but the program
will compile even if they don’t fulfil the concept, provided that the function is not referenced for that set of
parameters. e.g.:

4If a class does not define any copy-constructors (constructors which can be called with a single argument of type reference-to-T
or const-reference-to-T), then the compiler will generate one automatically.

5If a class does not define any copy-assignment operators which can be called with a single argument of type T, reference-to-T or
const-reference-to-T, then the compiler will generate one automatically.
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template<typename T>
class MyClass
{
public:

T* makeCopy(T* p)
{

return p->clone();
}

};

MyClass<int> mci;

double d;
MyClass<double> mcd;
double* pd=mcd.makeCopy(&d);

mci is fine; as no reference is made to the makeCopy member, it doesn’t matter that int isn’t a class. However,
the reference to mcd.makeCopy causes an error, as you cannot call member functions on a double.

4 Template Specialization and Overloading

Template Specialization allows you to decide that for a specific set of template parameters, the code instantiated
for a template should be different to the general case. Say, for example, you wish to use a template with a new
class as a Template Type Parameter (2.1.1), and though it has the same semantic behaviour as the classes the
template was designed for, the syntax is different, so the original template won’t compile with the new class as a
parameter. The solution to this problem is specialization.

Consider the following template function definition:

template<typename T>
void func(T value)
{

value.add(3);
}

This function assumes that the type substituted for the Template Type Parameter T is a class with a member
function add that takes a single parameter of a type that can be constructed from an int. Thus the following
classes would be OK:

class T1
{
public:

void add(int i,double d=0.0);
};

class T2
{
public:

std::string add(double d);
};

However, the class T3 below is not OK, because Add is has a capital A.
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class T3
{
public:

void Add(int i);
};

This means that we cannot use our original function template func for T3.

4.1 Explicit Specialization

What we can do, however, is Explicitly Specialize the template for T3:

template<>
void func<T3>(T3 value)
{

value.Add(3);
}

There are two distinctive things about this declaration. The first is the empty template parameter list after the
template keyword, and the second is the presence of the template argument list after the name of the function.
This tells the compiler that (a) a template is being specialized, and (b) what set of template parameters apply
for this specialization. Then, whenever the compiler needs to instantiate the template with this set of template
parameters, it uses the specialization instead of the general template.

Explicit Specialization applies both to class templates and function templates. Here is an example for a class
template, in which the constructor for the general template accepts its parameter by value, but the constructor
for the std::string instantiation accepts its parameter by const-reference, for efficiency:

template<typename T>
class X
{

X(T x);
};

template<>
class X<std::string>
{

X(const std::string& s);
};

Explicit Specialization can be used with recursive class templates to perform compile-time computations. e.g.:

template<unsigned i>
struct Fibonacci
{

static const unsigned result=Fibonacci<i-1>::result+Fibonacci<i-2>::result;
};

template<>
struct Fibonacci<0>
{
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static const unsigned result=1;
};

template<>
struct Fibonacci<1>
{

static const unsigned result=1;
};

int main()
{

std::cout<<Fibonacci<5>::result<<std::endl;
}

The class template Fibonacci<i> defines a constant result to be the i-th number in the Fibonacci Sequence
(1,1,2,3,5,8,13,. . . ) where every element is the sum of the two previous ones. This can be seen in the definition
of the general template - the value of result is set to the sum of the results of the previous two elements.
However, by itself, this is not enough, as each of those is the sum of the previous two, and so on. We solve this
by introducing the two explicit specializations for Fibonacci<0> and Fibonacci<1>, to define the first two
elements in the series. This way the expansion of the template for any value of i will eventually terminate, so
the sample main function will output 8.

In addition to Explicit Specialization, there is Partial Specialization (4.2) for class templates, and Function
Template Overloading (4.3) for function templates.

4.2 Partial Specialization

Partial Specialization allows you to specialize a class template for a subset of the possible template parameters,
where the definition of the template should be the same for the whole subset, but different to the general case.
e.g.:

template<typename T,typename U>
struct SameType
{

static const bool result=false;
};

template<typename T>
struct SameType<T,T>
{

static const bool result=true;
};

int main()
{

std::cout<<"Is int the same type as double?"
<<(SameType<int,double>::result?"Yes":"No")<<std::endl;

std::cout<<"Is std::string the same type as std::string?"
<<(SameType<std::string,std::string>::result?"Yes":"No")<<std::endl;

}

The partial specialization of the class template SameType looks a bit like a normal template definition (the
Template Parameter List is not empty), and a bit like an explicit specialization (there is a Template Argument
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List after the template name). The compiler knows it is a partial specialization, because both these things are
present. The partial specialization applies to all instantiations of the class template where the full template
argument list supplied for the general definition can be written down in the form for the partial specialization.

In this example, the partial template specialization applies if both types are the same, so if the types are the
same, the value of result is true, whereas if they are different, the general definition applies, and the value of
result is false. Therefore the example main function will output:

Is int the same type as double?No
Is std::string the same type as std::string?Yes

Partial Specialization can be used for very fine control over what template definition is used. For example, it is
possible to specialize on the const-ness of a template type parameter, or for template type parameters which
are templates:

template<typename T>
struct IsConst
{

static const bool result=false;
};

template<typename T>
struct IsConst<const T>
{

static const bool result=true;
};

template<typename T>
struct IsVector
{

static const bool result=false;
};

template<typename T>
struct IsVector<std::vector<T> >
{

static const bool result=true;
};

Thus the result member of IsConst is only true if the template parameter is a const type, and the result
member of IsVector is only true if the template parameter is an instantiation of the std::vector template.

4.3 Function Template Overloading

You cannot partially specialize a function template, but function templates can be overloaded, much the same as
functions can be overloaded. This means you can define multiple function templates with the same name, but
different template parameters, or a different function signature. You can use this to much the same effect as you
can use partial specialization of class templates. Consider the function template swap:

template<typename T>
void swap(T& lhs,T& rhs)
{
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T temp(lhs);
lhs=rhs;
rhs=temp;

}

This is generally sufficient to swap two values of any type that is copy-constructible, and assignable. However,
it creates a new object (temp), and copies data three times. If this template is instantiated for a class that is
expensive to copy, then it could be very inefficient. To ease this, we add a member function swap to our class
which swaps the value with that of another object as efficiently as possible:

class ExpensiveToCopy
{
public:

void swap(ExpensiveToCopy& other);
};

To call this, we now say a.swap(b) rather than swap(a,b), which is inconsistent. We can solve this by
specializing the function template swap for ExpensiveToCopy:

template<>
void swap<ExpensiveToCopy>(ExpensiveToCopy& lhs,ExpensiveToCopy& rhs)
{

lhs.swap(rhs);
}

All is well and good, but what if ExpensiveToCopy was a class template, such as std::vector; we don’t
want to have to specialize swap for every possible instantiation of the template. The solution to this is Function
Template Overloading - we just write a new template function which overloads the first, e.g.:

template<typename T>
void swap(std::vector<T>& lhs,std::vector<T>& rhs)
{

lhs.swap(rhs);
}

The compiler chooses which overloaded template to instantiate for each call using a mechanism called Partial
Ordering in addition to the normal overload resolution. This is quite complicated, but essentially results in more
specific overloads, like that of swap for std::vector being preferred to the more general equivalent, if the
actual parameters are compatible with the more specific one.

If Function Template Overloading does not suit your needs, and you really do need Partial Specialization (4.2),
the only option is to write a helper class template, with a single static member function that does all the work,
and have your function template forward to this function. You can then partially specialize the helper class
template to change the body of the static member. e.g.:

template<typename T>
class MyClass
{
public:

void write(std::ostream& os) const;
};
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template<typename T>
struct PrintDataHelper
{

static void doPrint(T value)
{

std::cout<<"The data is "<<value<<std::endl;
}

};

template<typename T>
struct PrintDataHelper<MyClass<T> >
{

static void doPrint(const MyClass<T>& value)
{

std::cout<<"The data is ";
value.write(std::cout);
std::cout<<std::endl;

}
};

template<typename T>
void printData(T value)
{

PrintDataHelper<T>::doPrint(value);
}

5 Conclusion

Hopefully, this article has given a glimpse into the power of templates, and some insight into how they
work and how they can be utilised to make the task of writing and maintaining software easier. They
provide immense scope for writing generic and customizable classes and functions, and form an essen-
tial C++ language feature, without which much of the Standard C++ Library couldn’t exist, or would
be greatly restricted. Just about every part of the library involves templates, from st::string (a
typedef for std::basic string<char,std::char traits<char>,std::allocator<char> >)
to the I/O-streams classes (e.g. std::ostream is a typedef for
std::basic ostream<char,std::char traits<char> >), to the containers and algorithms that
form the Standard Template Library portion, to the classes that implement the Standard facets of the
localization/internationalization classes (e.g. std::ctype<char>).
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