Multithreading and Concurrency

My book, C++ Concurrency in Action contains a detailed description of the C++11 threading facilities, and techniques for designing concurrent code.

The just::thread implementation of the new C++0x thread library is available for Microsoft Visual Studio 2005, Microsoft Visual Studio 2008, Microsoft Visual Studio 2010, g++ 4.5.2 and g++ 4.6.1 on Windows, g++ 4.3, 4.4, 4.5 and 4.6 on Linux, and g++ 4.3, 4.4 and 4.5 on MacOSX. Order your copy today.

Updated (yet again) Implementation of Futures for C++

Friday, 30 May 2008

I have updated my prototype futures library implementation yet again. This version adds wait_for_any() and wait_for_all() functions, which can be used either to wait for up to five futures known at compile time, or a dynamic collection using an iterator range.

    jss::unique_future<int> futures[count];
    // populate futures
    jss::unique_future<int>* const future=
        jss::wait_for_any(futures,futures+count);

    std::vector<jss::shared_future<int> > vec;
    // populate vec
    std::vector<jss::shared_future<int> >::iterator const f=
        jss::wait_for_any(vec.begin(),vec.end());

The new version is available for download, again under the Boost Software License. It still needs to be compiled against the Boost Subversion Trunk, as it uses the Boost Exception library and some new features of the Boost.Thread library, which are not available in an official boost release.

Sample usage can be seen in the test harness. The support for alternative allocators is still missing. The documentation for the futures library is available online, but is also included in the zip file.

Please download this prototype, put it through its paces, and let me know what you think.

Posted by Anthony Williams
[/ threading /] permanent link
Tags: , , , ,

| Stumble It! stumbleupon logo | Submit to Reddit reddit logo | Submit to DZone dzone logo

Comment on this post

If you liked this post, why not subscribe to the RSS feed RSS feed or Follow me on Twitter? You can also subscribe to this blog by email using the form on the right.

Updated (again) Implementation of Futures for C++

Thursday, 15 May 2008

I have updated my prototype futures library implementation again, primarily to add documentation, but also to fix a few minor issues.

The new version is available for download, again under the Boost Software License. It still needs to be compiled against the Boost Subversion Trunk, as it uses the Boost Exception library, which is not available in an official boost release.

Sample usage can be seen in the test harness. The support for alternative allocators is still missing. The documentation for the futures library is available online, but is also included in the zip file.

Please download this prototype, put it through its paces, and let me know what you think.

Posted by Anthony Williams
[/ threading /] permanent link
Tags: , , , ,

| Stumble It! stumbleupon logo | Submit to Reddit reddit logo | Submit to DZone dzone logo

Comment on this post

If you liked this post, why not subscribe to the RSS feed RSS feed or Follow me on Twitter? You can also subscribe to this blog by email using the form on the right.

Updated Implementation of Futures for C++

Sunday, 11 May 2008

I have updated my prototype futures library implementation in light of various comments received, and my own thoughts.

The new version is available for download, again under the Boost Software License. It still needs to be compiled against the Boost Subversion Trunk, as it uses the Boost Exception library, which is not available in an official boost release.

Sample usage can be seen in the test harness. The support for alternative allocators is still missing.

Changes

  • I have removed the try_get/timed_get functions, as they can be replaced with a combination of wait() or timed_wait() and get(), and they don't work with unique_future<R&> or unique_future<void>.
  • I've also removed the move() functions on unique_future. Instead, get() returns an rvalue-reference to allow moving in those types with move support. Yes, if you call get() twice on a movable type then the second get() returns an empty shell of an object, but I don't really think that's a problem: if you want to call get() multiple times, use a shared_future. I've implemented this with both rvalue-references and the boost.thread move emulation, so you can have a unique_future<boost::thread> if necessary. test_unique_future_for_move_only_udt() in test_futures.cpp shows this in action with a user-defined movable-only type X.
  • Finally, I've added a set_wait_callback() function to both promise and packaged_task. This allows for lazy-futures which don't actually run the operation to generate the value until the value is needed: no threading required. It also allows for a thread pool to do task stealing if a pool thread waits for a task that's not started yet. The callbacks must be thread-safe as they are potentially called from many waiting threads simultaneously. At the moment, I've specified the callbacks as taking a non-const reference to the promise or packaged_task for which they are set, but I'm open to just making them be any callable function, and leaving it up to the user to call bind() to do that.

I've left the wait operations as wait() and timed_wait(), but I've had a suggestion to use wait()/wait_for()/wait_until(), which I'm actively considering.

Please download this prototype, put it through its paces, and let me know what you think.

Posted by Anthony Williams
[/ threading /] permanent link
Tags: , , , ,

| Stumble It! stumbleupon logo | Submit to Reddit reddit logo | Submit to DZone dzone logo

Comment on this post

If you liked this post, why not subscribe to the RSS feed RSS feed or Follow me on Twitter? You can also subscribe to this blog by email using the form on the right.

Free Implementation of Futures for C++ from N2561

Monday, 05 May 2008

I am happy to announce the release of a prototype futures library for C++ based on N2561. Packaged as a single header file released under the Boost Software License it needs to be compiled against the Boost Subversion Trunk, as it uses the Boost Exception library, which is not available in an official boost release.

Sample usage can be seen in the test harness. There is one feature missing, which is the support for alternative allocators. I intend to add such support in due course.

Please download this prototype, put it through its paces, and let me know what you think.

Posted by Anthony Williams
[/ threading /] permanent link
Tags: , , , ,

| Stumble It! stumbleupon logo | Submit to Reddit reddit logo | Submit to DZone dzone logo

Comment on this post

If you liked this post, why not subscribe to the RSS feed RSS feed or Follow me on Twitter? You can also subscribe to this blog by email using the form on the right.

Bug Found in Boost.Thread (with Fix): Flaw in Condition Variable on Windows

Monday, 28 April 2008

There's a bug....

First the bad news: shortly after Boost 1.35.0 was released, a couple of users reported experiencing problems using boost::condition_variable on Windows: when they used notify_one()<\code>, sometimes their notifies disappeared, even when they knew there was a waiting thread.

... and now it's fixed

Next, the good news: I've found and fixed the bug, and committed the fix to the boost Subversion repository. If you can't update your boost implementation to trunk, you can download the new code and replace boost/thread/win32/condition_variable.hpp from the boost 1.35.0 distribution with the new version.

What was it?

For those of you interested in the details, this bug was in code related to detecting (and preventing) spurious wakes. When a condition variable was notified with notify_one(), the implementation was choosing one or more threads to compete for the notify. One of these would get the notification and return from wait(). Those that didn't get the notify were supposed to resume waiting without returning from wait(). Unfortunately, this left a potential gap where those threads weren't waiting, so would miss any calls to notify_one() that occurred before those threads resumed waiting.

The fix was to rewrite the wait/notify mechanism so this gap no longer exists, by changing the way that waiting threads are counted.

Posted by Anthony Williams
[/ threading /] permanent link
Tags: , , ,

| Stumble It! stumbleupon logo | Submit to Reddit reddit logo | Submit to DZone dzone logo

Comment on this post

If you liked this post, why not subscribe to the RSS feed RSS feed or Follow me on Twitter? You can also subscribe to this blog by email using the form on the right.

The Future of Concurrency in C++: Slides from ACCU 2008

Monday, 07 April 2008

My presentation on The Future of Concurrency in C++ at ACCU 2008 last Thursday went off without a hitch. I was pleased to find that my talk was well attended, and the audience had lots of worthwhile questions — hopefully I answered them to everybody's satisfaction.

For those that didn't attend, or for those that did, but would like a reminder of what I said, here are the slides from my presentation.

Posted by Anthony Williams
[/ threading /] permanent link
Tags: , , ,

| Stumble It! stumbleupon logo | Submit to Reddit reddit logo | Submit to DZone dzone logo

Comment on this post

If you liked this post, why not subscribe to the RSS feed RSS feed or Follow me on Twitter? You can also subscribe to this blog by email using the form on the right.

Futures and Tasks in C++0x

Thursday, 27 March 2008

I had resigned myself to Thread Pools and Futures being punted to TR2 rather than C++0x, but it seems there is potential for some movement on this issue. At the meeting of WG21 in Kona, Hawaii in October 2007 it was agreed to include asynchronous future values in C++0x, whilst excluding thread pools and task launching.

Detlef Vollman has rekindled the effort, and drafted N2561: An Asynchronous Future Value with myself and Howard Hinnant, based on a discussion including other members of the Standards Committee. This paper proposes four templates: unique_future and shared_future, which are the asynchronous values themselves, and packaged_task and promise, which provide ways of setting the asynchronous values.

Asynchronous future values

unique_future is very much like unique_ptr: it represents exclusive ownership of the value. Ownership of a (future) value can be moved between unique_future instances, but no two unique_future instances can refer to the same asynchronous value. Once the value is ready for retrieval, it is moved out of the internal storage buffer: this allows for use with move-only types such as std::ifstream.

Similarly, shared_future is very much like shared_ptr: multiple instances can refer to the same (future) value, and shared_future instances can be copied around. In order to reduce surprises with this usage (with one thread moving the value through one instance at the same time as another tries to move it through another instance), the stored value can only be accessed via const reference, so must be copied out, or accessed in place.

Storing the future values as the return value from a function

The simplest way to calculate a future value is with a packaged_task<T>. Much like std::function<T()>, this encapsulates a callable object or function, for invoking at a later time. However, whereas std::function returns the result directly to the caller, packaged_task stores the result in a future.

    extern int some_function();
    std::packaged_task<int> task(some_function);
    std::unique_future<int> result=task.get_future();

    // later on, some thread does
    task();
    // and "result" is now ready

Making a promise to provide a future value

The other way to store a value to be picked up with a unique_future or shared_future is to use a promise, and then explicitly set the value by calling the set_value() member function.

    std::promise<int> my_promise;
    std::unique_future<int> result=my_promise.get_future();

    // later on, some thread does
    my_promise.set_value(42);
    // and "result" is now ready.

Exceptional returns

Futures also support storing exceptions: when you try and retrieve the value, if there is a stored exception, that exception is thrown rather than the value being retrieved. With a packaged_task, an exception gets stored if the wrapped function throws an exception when it is invoked, and with a promise, you can explicitly store an exception with the set_exception() member function.

Feedback

As the paper says, this is not a finished proposal: it is a basis for further discussion. Let me know if you have any comments.

Posted by Anthony Williams
[/ threading /] permanent link
Tags: , , , ,

| Stumble It! stumbleupon logo | Submit to Reddit reddit logo | Submit to DZone dzone logo

Comment on this post

If you liked this post, why not subscribe to the RSS feed RSS feed or Follow me on Twitter? You can also subscribe to this blog by email using the form on the right.

Thread Interruption in the Boost Thread Library

Tuesday, 11 March 2008

One of the new features introduced in the upcoming 1.35.0 release of the boost thread library is support for interruption of a running thread. Similar to the Java and .NET interruption support, this allows for one thread to request another thread to stop at the next interruption point. This is the only way to explicitly request a thread to terminate that is directly supported by the Boost Thread library, though users can manually implement cooperative interruption if required.

Interrupting a thread in this way is much less dangerous than brute-force tactics such as TerminateThread(), as such tactics can leave broken invariants and leak resources. If a thread is killed using a brute-force method and it was holding any locks, this can also potentially lead to deadlock when another thread tries to acquire those locks at some future point. Interruption is also easier and more reliable than rolling your own cooperative termination scheme using mutexes, flags, condition variables, or some other synchronization mechanism, since it is part of the library.

Interrupting a Thread

A running thread can be interrupted by calling the interrupt() member function on the corresponding boost::thread object. If the thread doesn't have a boost::thread object (e.g the initial thread of the application), then it cannot be interrupted.

Calling interrupt() just sets a flag in the thread management structure for that thread and returns: it doesn't wait for the thread to actually be interrupted. This is important, because a thread can only be interrupted at one of the predefined interruption points, and it might be that a thread never executes an interruption point, so never sees the request. Currently, the interruption points are:

  • boost::thread::join()
  • boost::thread::timed_join()
  • boost::condition_variable::wait()
  • boost::condition_variable::timed_wait()
  • boost::condition_variable_any::wait()
  • boost::condition_variable_any::timed_wait()
  • boost::this_thread::sleep()
  • boost::this_thread::interruption_point()

When a thread reaches one of these interruption points, if interruption is enabled for that thread then it checks its interruption flag. If the flag is set, then it is cleared, and a boost::thread_interrupted exception is thrown. If the thread is already blocked on a call to one of the interruption points with interruption enabled when interrupt() is called, then the thread will wake in order to throw the boost::thread_interrupted exception.

Catching an Interruption

boost::thread_interrupted is just a normal exception, so it can be caught, just like any other exception. This is why the "interrupted" flag is cleared when the exception is thrown — if a thread catches and handles the interruption, it is perfectly acceptable to interrupt it again. This can be used, for example, when a worker thread that is processing a series of independent tasks — if the current task is interrupted, the worker can handle the interruption and discard the task, and move onto the next task, which can then in turn be interrupted. It also allows the thread to catch the exception and terminate itself by other means, such as returning error codes, or translating the exception to pass through module boundaries.

Disabling Interruptions

Sometimes it is necessary to avoid being interrupted for a particular section of code, such as in a destructor where an exception has the potential to cause immediate process termination. This is done by constructing an instance of boost::this_thread::disable_interruption. Objects of this class disable interruption for the thread that created them on construction, and restore the interruption state to whatever it was before on destruction:

    void f()
    {
        // interruption enabled here
        {
            boost::this_thread::disable_interruption di;
            // interruption disabled
            {
                boost::this_thread::disable_interruption di2;
                // interruption still disabled
            } // di2 destroyed, interruption state restored
            // interruption still disabled
        } // di destroyed, interruption state restored
        // interruption now enabled
    }

The effects of an instance of boost::this_thread::disable_interruption can be temporarily reversed by constructing an instance of boost::this_thread::restore_interruption, passing in the boost::this_thread::disable_interruption object in question. This will restore the interruption state to what it was when the boost::this_thread::disable_interruption object was constructed, and then disable interruption again when the boost::this_thread::restore_interruption object is destroyed:

    void g()
    {
        // interruption enabled here
        {
            boost::this_thread::disable_interruption di;
            // interruption disabled
            {
                boost::this_thread::restore_interruption ri(di);
                // interruption now enabled
            } // ri destroyed, interruption disabled again
            {
                boost::this_thread::disable_interruption di2;
                // interruption disabled
                {
                    boost::this_thread::restore_interruption ri2(di2);
                    // interruption still disabled
                    // as it was disabled when di2 constructed
                } // ri2 destroyed, interruption still disabled
            } //di2 destroyed, interruption still disabled
        } // di destroyed, interruption state restored
        // interruption now enabled
    }

boost::this_thread::disable_interruption and boost::this_thread::restore_interruption cannot be moved or copied, and they are the only way of enabling and disabling interruption. This ensures that the interruption state is correctly restored when the scope is exited (whether normally, or by an exception), and that you cannot enable interruptions in the middle of an interruption-disabled block unless you're in full control of the code, and have access to the boost::this_thread::disable_interruption instance.

At any point, the interruption state for the current thread can be queried by calling boost::this_thread::interruption_enabled().

Cooperative Interruption

As well as the interruption points on blocking operations such as sleep() and join(), there is one interruption point explicitly designed to allow interruption at a user-designated point in the code. boost::this_thread::interruption_point() does nothing except check for an interruption, and can therefore be used in long-running code that doesn't execute any other interruption points, in order to allow for cooperative interruption. Just like the other interruption points, interruption_point() respects the interruption enabled state, and does nothing if interruption is disabled for the current thread.

Interruption is Not Cancellation

On POSIX platforms, threads can be cancelled rather than killed, by calling pthread_cancel(). This is similar to interruption, but is a separate mechanism, with different behaviour. In particular, cancellation cannot be stopped once it is started: whereas interruption just throws an exception, once a cancellation request has been acknowledged the thread is effectively dead. pthread_cancel() does not always execute destructors either (though it does on some platforms), as it is primarily a C interface — if you want to clean up your resources when a thread is cancelled, you need to use pthread_cleanup_push() to register a cleanup handler. The advantage here is that pthread_cleanup_push() works in C stack frames, whereas exceptions don't play nicely in C: on some platforms it will crash your program for an exception to propagate into a C stack frame.

For portable code, I recommend interruption over cancellation. It's supported on all platforms that can use the Boost Thread library, and it works well with C++ code — it's just another exception, so all your destructors and catch blocks work just fine.

Posted by Anthony Williams
[/ threading /] permanent link
Tags: , , , , ,

| Stumble It! stumbleupon logo | Submit to Reddit reddit logo | Submit to DZone dzone logo

Comment on this post

If you liked this post, why not subscribe to the RSS feed RSS feed or Follow me on Twitter? You can also subscribe to this blog by email using the form on the right.

Acquiring Multiple Locks Without Deadlock

Monday, 03 March 2008

In a software system with lots of fine-grained mutexes, it can sometimes be necessary to acquire locks on more than one mutex together in order to perform some operation. If this is not done with care, then there is the possibility of deadlock, as multiple threads may lock the same mutexes in a different order. It is for this reason that the thread library coming with C++0x will include a lock() function for locking multiple mutexes together: this article describes the implementation details behind such a function.

Choose the lock order by role

The easiest way to deal with this is to always lock the mutexes in the same order. This is especially easy if the order can be hard-coded, and some uses naturally lend themselves towards this choice. For example, if the mutexes protect objects with different roles, it is relatively easy to always lock the mutex protecting one set of data before locking the other one. In such a situation, Lock hierarchies can be used to enforce the ordering — with a lock hierarchy, a thread cannot acquire a lock on a mutex with a higher hierarchy level than any mutexes currently locked by that thread.

If it is not possible to decide a-priori which mutex to lock first, such as when the mutexes are associated with the same sort of data, then a more complicated policy must be applied.

Choose the lock order by address

The simplest technique in these cases is to always lock the mutexes in ascending order of address (examples use the types and functions from the upcoming 1.35 release of Boost), like this:

void lock(boost::mutex& m1,boost::mutex& m2)
{
    if(&m1<&m2)
    {
        m1.lock();
        m2.lock();
    }
    else
    {
        m2.lock();
        m1.lock();
    }
}

This works for small numbers of mutexes, provided this policy is maintained throughout the application, but if several mutexes must be locked together, then calculating the ordering can get complicated, and potentially inefficient. It also requires that the mutexes are all of the same type. Since there are many possible mutex and lock types that an application might choose to use, this is a notable disadvantage, as the function must be written afresh for each possible combination.

Order mutexes "naturally", with try-and-back-off

If the mutexes cannot be ordered by address (for whatever reason), then an alternative scheme must be found. One such scheme is to use a try-and-back-off algorithm: try and lock each mutex in turn; if any cannot be locked, unlock the others and start again. The simplest implementation for 3 mutexes looks like this:

void lock(boost::mutex& m1,boost::mutex& m2,boost::mutex& m3)
{
    do
    {
        m1.lock();
        if(m2.try_lock())
        {
            if(m3.try_lock())
            {
                return;
            }
            m2.unlock();
        }
        m1.unlock();
    }
    while(true);
}

Wait for the failed mutex

The big problem with this scheme is that it always locks the mutexes in the same order. If m1 and m2 are currently free, but m3 is locked by another thread, then this thread will repeatedly lock m1 and m2, fail to lock m3 and unlock m1 and m2. This just wastes CPU cycles for no gain. Instead, what we want to do is block waiting for m3, and try to acquire the others only when m3 has been successfully locked by this thread. For three mutexes, a first attempt looks like this:

void lock(boost::mutex& m1,boost::mutex& m2,boost::mutex& m3)
{
    unsigned lock_first=0;
    while(true)
    {
        switch(lock_first)
        {
        case 0:
            m1.lock();
            if(m2.try_lock())
            {
                if(m3.try_lock())
                    return;
                lock_first=2;
                m2.unlock();
            }
            else
            {
                lock_first=1;
            }
            m1.unlock();
            break;
        case 1:
            m2.lock();
            if(m3.try_lock())
            {
                if(m1.try_lock())
                    return;
                lock_first=0;
                m3.unlock();
            }
            else
            {
                lock_first=2;
            }
            m2.unlock();
            break;
        case 2:
            m3.lock();
            if(m1.try_lock())
            {
                if(m2.try_lock())
                    return;
                lock_first=1;
                m1.unlock();
            }
            else
            {
                lock_first=0;
            }
            m3.unlock();
            break;
        }
    }
}

Simplicity and Robustness

This code is very long-winded, with all the duplication between the case blocks. Also, it assumes that the mutexes are all boost::mutex, which is overly restrictive. Finally, it assumes that the try_lock calls don't throw exceptions. Whilst this is true for the Boost mutexes, it is not required to be true in general, so a more robust implementation that allows the mutex type to be supplied as a template parameter will ensure that any exceptions thrown will leave all the mutexes unlocked: the unique_lock template will help with that by providing RAII locking. Taking all this into account leaves us with the following:

template<typename MutexType1,typename MutexType2,typename MutexType3>
unsigned lock_helper(MutexType1& m1,MutexType2& m2,MutexType3& m3)
{
    boost::unique_lock<MutexType1> l1(m1);
    boost::unique_lock<MutexType2> l2(m2,boost::try_to_lock);
    if(!l2)
    {
        return 1;
    }
    if(!m3.try_lock())
    {
        return 2;
    }
    l2.release();
    l1.release();
    return 0;
}

template<typename MutexType1,typename MutexType2,typename MutexType3>
void lock(MutexType1& m1,MutexType2& m2,MutexType3& m3)
{
    unsigned lock_first=0;
    while(true)
    {
        switch(lock_first)
        {
        case 0:
            lock_first=lock_helper(m1,m2,m3);
            if(!lock_first)
                return;
            break;
        case 1:
            lock_first=lock_helper(m2,m3,m1);
            if(!lock_first)
                return;
            lock_first=(lock_first+1)%3;
            break;
        case 2:
            lock_first=lock_helper(m3,m1,m2);
            if(!lock_first)
                return;
            lock_first=(lock_first+2)%3;
            break;
        }
    }
}

This code is simultaneously shorter, simpler and more general than the previous implementation, and is robust in the face of exceptions. The lock_helper function locks the first mutex, and then tries to lock the other two in turn. If either of the try_locks fail, then all currently-locked mutexes are unlocked, and it returns the index of the mutex than couldn't be locked. On success, the release members of the unique_lock instances are called to release ownership of the locks, and thus stop them automatically unlocking the mutexes during destruction, and 0 is returned. The outer lock function is just a simple wrapper around lock_helper that chooses the order of the mutexes so that the one that failed to lock last time is tried first.

Extending to more mutexes

This scheme can also be easily extended to handle more mutexes, though the code gets unavoidably longer, since there are more cases to handle — this is where the C++0x variadic templates will really come into their own. Here's the code for locking 5 mutexes together:

template<typename MutexType1,typename MutexType2,typename MutexType3,
         typename MutexType4,typename MutexType5>
unsigned lock_helper(MutexType1& m1,MutexType2& m2,MutexType3& m3,
                     MutexType4& m4,MutexType5& m5)
{
    boost::unique_lock<MutexType1> l1(m1);
    boost::unique_lock<MutexType2> l2(m2,boost::try_to_lock);
    if(!l2)
    {
        return 1;
    }
    boost::unique_lock<MutexType3> l3(m3,boost::try_to_lock);
    if(!l3)
    {
        return 2;
    }
    boost::unique_lock<MutexType4> l2(m4,boost::try_to_lock);
    if(!l4)
    {
        return 3;
    }
    if(!m5.try_lock())
    {
        return 4;
    }
    l4.release();
    l3.release();
    l2.release();
    l1.release();
    return 0;
}

template<typename MutexType1,typename MutexType2,typename MutexType3,
         typename MutexType4,typename MutexType5>
void lock(MutexType1& m1,MutexType2& m2,MutexType3& m3,
          MutexType4& m4,MutexType5& m5)
{
    unsigned const lock_count=5;
    unsigned lock_first=0;
    while(true)
    {
        switch(lock_first)
        {
        case 0:
            lock_first=lock_helper(m1,m2,m3,m4,m5);
            if(!lock_first)
                return;
            break;
        case 1:
            lock_first=lock_helper(m2,m3,m4,m5,m1);
            if(!lock_first)
                return;
            lock_first=(lock_first+1)%lock_count;
            break;
        case 2:
            lock_first=lock_helper(m3,m4,m5,m1,m2);
            if(!lock_first)
                return;
            lock_first=(lock_first+2)%lock_count;
            break;
        case 3:
            lock_first=lock_helper(m4,m5,m1,m2,m3);
            if(!lock_first)
                return;
            lock_first=(lock_first+3)%lock_count;
            break;
        case 4:
            lock_first=lock_helper(m5,m1,m2,m3,m4);
            if(!lock_first)
                return;
            lock_first=(lock_first+4)%lock_count;
            break;
        }
    }
}

Final Code

The final code for acquiring multiple locks provides try_lock and lock functions for 2 to 5 mutexes. Though the try_lock functions are relatively straight-forward, their existence makes the lock_helper functions slightly simpler, as they can just defer to the appropriate overload of try_lock to cover all the mutexes beyond the first one.

Posted by Anthony Williams
[/ threading /] permanent link
Tags: , , ,

| Stumble It! stumbleupon logo | Submit to Reddit reddit logo | Submit to DZone dzone logo

Comment on this post

If you liked this post, why not subscribe to the RSS feed RSS feed or Follow me on Twitter? You can also subscribe to this blog by email using the form on the right.

Thread Library Now in C++0x Working Draft

Monday, 11 February 2008

The latest proposal for the C++ standard thread library has finally made it into the C++0x working draft.

Woohoo!

There will undoubtedly be minor changes as feedback comes in to the committee, but this is the first real look at what C++0x thread support will entail, as approved by the whole committee. The working draft also includes the new C++0x memory model, and atomic types and operations. This means that for the first time, C++ programs will legitimately be able to spawn threads without immediately straying into undefined behaviour. Not only that, but the memory model has been very carefully thought out, so it should be possible to write even low-level stuff such as lock-free containers in Standard C++.

Posted by Anthony Williams
[/ threading /] permanent link
Tags: , , ,

| Stumble It! stumbleupon logo | Submit to Reddit reddit logo | Submit to DZone dzone logo

Comment on this post

If you liked this post, why not subscribe to the RSS feed RSS feed or Follow me on Twitter? You can also subscribe to this blog by email using the form on the right.

More recent entries Older entries