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Structural Patterns



Loop Parallelism



Loop Parallelism (I)

Apply the same operation to many
independent data items

Great for Embarrasingly
Parallel problems

Frameworks commonly provide a
parallel for each operation or
equivalent
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Loop Parallelism (II)

std::vector<some_data> data;

parallel_for_each(data.begin,data.end(),process_data);

#pragma omp parallel for

for(unsigned i=0;i<data.size();++i) {

process_data(data[i]);

}
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Fork/Join



Fork/Join (I)

Subdivide into parallel tasks, and
then wait for them to complete

Often used recursively

Works best when used at the top
level

Need to watch for uneven
workloads
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Fork/Join (II)

template<typename Iter,typename Func>

void parallel_for_each(Iter first,Iter last,Func f) {

unsigned long const length=std::distance(first,last);

if(length<minimum_split_length) {

std::for_each(first,last,f);

} else {

Iter const mid_point=first+length/2;

auto top=std::async([=]{

parallel_for_each(first,mid_point,f);});

auto bottom=std::async([=]{

parallel_for_each(mid_point,last,f);});

top.wait(); bottom.wait();

}

}
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Pipelines



Pipelines (I)

A set of discrete tasks that must
be applied in sequence

The same sequence of tasks need
to run over a large data set

An alternative to loop parallelism,
where the order of the data is
important
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Pipelines (II)

Item 1

Task 1 Task 2 Task 3

Item 1

Item 1

Item 2

Item 2

Item 2

Item 3

Item 3

Item 3
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Pipelines (III)

Maximum parallelism is the
number of tasks in the pipeline
Can mess with cache locality:

If each task is always run on the same core
then the data must be moved between cores
If data is kept on the same core, then the
task code must be reloaded for each step
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Actors



Actors (I)

Actor 1

Actor 3

Actor 2
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Actors (II)

Each actor runs entirely isolated
(no shared state)

The only communication between
actors is via message queues

In some languages these rules are
enforced. In C++ it is your
responsibility to follow them.
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Actors (III)

Upsides:

Each actor can be analysed
independently

Data races are impossible (if you
follow the rules)

Can be easier to reason about
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Actors (IV)

Downsides:

Not good for short-lived tasks

Message passing isn’t always the
best communication mechanism

Scalability is limited to the number
of actors
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Actors (V)

Building an ATM with Actors

3 actors:

User Interface

Core ATM Logic

Communicating with the bank
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Actors (VI)

struct ping { jss::actor_ref sender; };

struct pong {};

jss::actor pp1([] {

jss::actor::receive().match<ping>(

[](ping p) {

p.sender.send(pong());

});

});

jss::actor pp2([&] {

pp1.send(ping{jss::actor::self()});

jss::actor::receive().match<pong>(

[](pong){});

});
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Speculative Execution



Speculative Execution (I)

Make use of available concurrency:

Perform tasks that might be
needed

Execute multiple algorithms to
obtain a result

Execute dependent tasks with
predicted data
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Speculative Execution (II)

Can reduce latency

Increases total work done

Cancelling speculative tasks can be
tricky

Speculative tasks must be
side-effect free
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Speculative Execution (III)

template<typename Iter,typename Match>

Iter find(Iter first,Iter last,Match M,unsigned N) {

unsigned long const D=std::distance(first,last);

std::atomic<bool> done(false);

std::promise<Iter> p;

std::vector<std::future<void>> v(N);

for(unsigned i=0;i<N;++i) {

Iter const end=(i==(N-1))?last:(first+D/N);

v[i]=std::async(Searcher<Iter,Match>(first,end,M,done,p));

first=block_end;

}

for(auto&f:v) { f.wait(); }

return done?p.get_future().get():last;

}
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Speculative Execution (IV)

template<typename Iter,typename Match>

struct Searcher {

Iter first; Iter last; Match const& M;

std::atomic<bool>& done; std::promise<Iter>& p;

Searcher(...); // obvious constructor impl

void operator()() {

for(Iter it=first;it!=last && !done;++it) {

if(*it==M) {

try { p.set_value(it); }

catch(std::future_error) {}

done=true; return;

} } }

};
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Map/Reduce

−→



Map/Reduce (I)

An algorithm in two halves:

Map: x[i] → f(x[i])

Reduce: Accumulate the results
(e.g.

∑
f(x[i]))

(Aside: Google’s MapReduce
operates on key/value pairs)
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Map/Reduce (II)

Scales well with multiple cores

Used in OpenMP and MPI

Covers many parallel algorithms

The map and reduce operations
must be thread-safe

The overhead depends on the data
granularity
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Map/Reduce (III): Word count

typedef std::map<std::string,unsigned> map_type;

map_type count_words(word_list const& words) {

map_type counts;

std::string word;

while(words.get_next(word))

++counts[s];

return counts;

}

map_type combine_maps(

map_type counts,map_type const& other) {

for(auto const& entry: other)

counts[entry.first]+=entry.second;

return counts;

}
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Dataflow



Dataflow (I)

You specify the relationships, and
the runtime handles the
parallelization

Has a “Functional Programming”
style feel, even in imperative
languages
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Dataflow (II): Simple Variables

int main() {

jss::dataflow::variable<int> x,y,z;

z.task([&]{return x.get()+y.get();});

x=23;

y=19;

assert(z.get()==42);

}
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Dataflow (III): Channels

int main() {

int const count=100;

jss::dataflow::channel<int> x,y,z;

jss::dataflow::task([&]{

while(true) { z<<(x.pop()+y.pop()); }});

jss::dataflow::task([&x]{

for(int i=0;i<count;++i) { x<<rand()%20; }});

jss::dataflow::task([&y]{

for(int i=0;i<count;++i) { y<<rand()%20; }});

for(int i=0;i<count;++i) { std::cout<<z.pop()<<’\n’; }

}
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Dataflow (IV)

Dataflow concurrency is an
extension of the pipeline pattern to
a general DAG

The runtime provides facilities to
split, filter and combine channels
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Communication Patterns



Communication Patterns

Read Only Data

Mutexes and Locks

Futures

Queues and Channels

Other Data Structures Designed
for Concurrent Access
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Mutexes and Locks



Mutexes and Locks (I)

Explicitly limit concurrency!

Low level mechanism

Good for migrating sequential code

Wrappers such as
synchronized value<T> can
avoid correctness issues
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Mutexes and Locks (II): synchronized value<T>

void foo(jss::synchronized_value<std::string>& s) {

std::string local=*s;

s->append("foo");

jss::update_guard<std::string> guard(s);

unsigned pos=guard->find("f");

if(pos==std::string::npos)

*guard += "bar";

else

(*guard)[pos] = ’b’;

}
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Futures



Futures (I)

Synchronization is internal to
library

Read and write operations are
explicit

One-shot communication

Every task framework has some
form of future
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Futures (II)

In C++0x, futures are used with:
std::async, as in the fork/join
example
std::promise, as in the search
example
std::packaged task, a building
block for task queues and thread
pools
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Queues and Channels



Queues and Channels (I)

Allow multiple data items to be
transferred

Fundamental to message-passing
systems

Myriad of choices:
SP/MP, SC/MC, bounded/unbounded, etc.
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Queues and Channels (II): Bounded vs Unbounded

Bounded Queues limit the
number of items in the queue
⇒ Producer blocks if the queue is full

Unbounded Queues have no such
limit
⇒ May consume a lot of memory if producer

runs faster than consumer
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Queues and Channels (III): Bounded vs Unbounded

Unbounded queues handle
“bursty” data better

Bounded queues even out the
processing
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Queues and Channels (IV): SPSC and MPSC

Single Producer Single Consumer
⇒ one-to-one channel between 2 threads, actors

or tasks

Multiple Producer Single
Consumer
⇒ standard “message passing” queue, such as

an Actor’s mailbox
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Queues and Channels (V): SPMC and MPMC

Single Producer Multiple
Consumer
⇒ broadcast channel

Multiple Producer Multiple
Consumer
⇒ general purpose queue

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Queues and Channels (VI)

Special-purpose queues may have
additional properties

Work-stealing queues

Dataflow channels

Priority queues
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Other Data Structures Designed for
Concurrent Access



Other Data Structures Designed for Concurrent Access (I)

More than one thread can access
the data structure concurrently,
without either one waiting for the
other

There may be restrictions on
which operations can be called
concurrently
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Other Data Structures Designed for Concurrent Access (II)

Stacks

Hash tables

Other variations on lists, sets,
maps and queues
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Concurrent Hash Tables (I)

Allow concurrent queries and
modifications

May allow concurrent removal

May allow concurrent iteration
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Concurrent Hash Tables (II)

Use for lookup tables — e.g. find
user information by ID

Cache results — e.g. DNS queries

Can be faster than map/reduce on
SMP systems
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Concurrent Hash Tables (III): Word count

typedef jss::concurrent_map<

std::string,std::atomic<unsigned>> map_type;

void count_words(

map_type& counts, word_list const& words) {

std::string word;

while(words.get_next(word)) {

std::pair<map_type::iterator,bool>

value=counts.insert(s,1);

if(!value.second)

++(value.first->second);

}

}
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Other Concurrent Data Structures

Skip lists: Java provides
ConcurrentSkipListMap and
ConcurrentSkipListSet

TBB has concurrent vector

More complex data structures end
up with a mutex lock
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Choosing your patterns



Choosing your patterns (I)

What style of problem is it?

event-driven

recursive

embarassingly parallel
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Choosing your patterns (II)

What level of the application are we
at?

top level

background processing

inner loop
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Choosing your patterns (III)

How can we best split the tasks and
data?

few/many tasks

small/large amounts of data

simple/complex interactions
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Choosing your patterns (IV)

What scale are we at?

Single multi-core processor

Multiple multi-core processors

Local cluster

Globally distributed
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Further Reading

Patterns for Parallel Programming, Timothy G. Mattson,
Bervely A. Sanders, Berna L. Massingill, Addison Wesley.

Programming Scala, Dean Wampler, Alex Payne, O’Reilly
Media (Available online)

The GPars Project — Reference Documentation
(Available online)

Concurrent Programming in Erlang, Joe Armstrong,
Robert Virding, Claes Wikström, Mike Williams, Prentice
Hall
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just::thread provides a complete implementation of the C++0x thread
library for MSVC 2005, 2008 and 2010, and g++ 4.3, 4.4 and 4.5 for

Ubuntu/Debian/Fedora. MacOSX support coming soon.
For a 50% discount go to:

http://www.stdthread.co.uk/accu2011

Just::Thread Pro also coming soon, with support for many of the high level
facilities shown in this presentation. Find out more at:

http://www.stdthread.co.uk/pro

http://www.stdthread.co.uk/accu2011
http://www.stdthread.co.uk/pro


My book

C++ Concurrency in Action: Practical
Multithreading with the new C++
Standard, currently available under the
Manning Early Access Program, and
due to be printed this summer.

http://www.stdthread.co.uk/book/
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