
Picking Patterns for Parallel Programs

Anthony Williams

Just Software Solutions Ltd
http://www.justsoftwaresolutions.co.uk

16th April 2011

http://www.justsoftwaresolutions.co.uk


Picking Patterns for Parallel Programs

Buzzword Bingo

Structural Patterns

Communication Patterns

Choosing Patterns

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Buzzword Bingo

Actors Agents Message Queues

Tasks CSP Dataflow

Map-reduce Locks Continuations

Lock-free False Sharing Fork/Join

Work-Stealing Pipelines SPMD

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Structural Patterns



Loop Parallelism



Loop Parallelism (I)

Apply the same operation to many
independent data items

Great for Embarrasingly
Parallel problems

Frameworks commonly provide a
parallel for each operation or
equivalent

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Loop Parallelism (II)

std::vector<some_data> data;

parallel_for_each(data.begin,data.end(),process_data);

#pragma omp parallel for

for(unsigned i=0;i<data.size();++i) {

process_data(data[i]);

}

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Fork/Join



Fork/Join (I)

Subdivide into parallel tasks, and
then wait for them to complete

Often used recursively

Works best when used at the top
level

Need to watch for uneven
workloads

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Fork/Join (II)

template<typename Iter,typename Func>

void parallel_for_each(Iter first,Iter last,Func f) {

unsigned long const length=std::distance(first,last);

if(length<minimum_split_length) {

std::for_each(first,last,f);

} else {

Iter const mid_point=first+length/2;

auto top=std::async([=]{

parallel_for_each(first,mid_point,f);});

auto bottom=std::async([=]{

parallel_for_each(mid_point,last,f);});

top.wait(); bottom.wait();

}

}

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Pipelines



Pipelines (I)

A set of discrete tasks that must
be applied in sequence

The same sequence of tasks need
to run over a large data set

An alternative to loop parallelism,
where the order of the data is
important

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Pipelines (II)

Item 1

Task 1 Task 2 Task 3

Item 1

Item 1

Item 2

Item 2

Item 2

Item 3

Item 3

Item 3

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Pipelines (III)

Maximum parallelism is the
number of tasks in the pipeline
Can mess with cache locality:

If each task is always run on the same core
then the data must be moved between cores
If data is kept on the same core, then the
task code must be reloaded for each step

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Actors



Actors (I)

Actor 1

Actor 3

Actor 2

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Actors (II)

Each actor runs entirely isolated
(no shared state)

The only communication between
actors is via message queues

In some languages these rules are
enforced. In C++ it is your
responsibility to follow them.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Actors (III)

Upsides:

Each actor can be analysed
independently

Data races are impossible (if you
follow the rules)

Can be easier to reason about

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Actors (IV)

Downsides:

Not good for short-lived tasks

Message passing isn’t always the
best communication mechanism

Scalability is limited to the number
of actors

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Actors (V)

Building an ATM with Actors

3 actors:

User Interface

Core ATM Logic

Communicating with the bank

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Actors (VI)

struct ping { jss::actor_ref sender; };

struct pong {};

jss::actor pp1([] {

jss::actor::receive().match<ping>(

[](ping p) {

p.sender.send(pong());

});

});

jss::actor pp2([&] {

pp1.send(ping{jss::actor::self()});

jss::actor::receive().match<pong>(

[](pong){});

});

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Speculative Execution



Speculative Execution (I)

Make use of available concurrency:

Perform tasks that might be
needed

Execute multiple algorithms to
obtain a result

Execute dependent tasks with
predicted data

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Speculative Execution (II)

Can reduce latency

Increases total work done

Cancelling speculative tasks can be
tricky

Speculative tasks must be
side-effect free

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Speculative Execution (III)

template<typename Iter,typename Match>

Iter find(Iter first,Iter last,Match M,unsigned N) {

unsigned long const D=std::distance(first,last);

std::atomic<bool> done(false);

std::promise<Iter> p;

std::vector<std::future<void>> v(N);

for(unsigned i=0;i<N;++i) {

Iter const end=(i==(N-1))?last:(first+D/N);

v[i]=std::async(Searcher<Iter,Match>(first,end,M,done,p));

first=block_end;

}

for(auto&f:v) { f.wait(); }

return done?p.get_future().get():last;

}

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Speculative Execution (IV)

template<typename Iter,typename Match>

struct Searcher {

Iter first; Iter last; Match const& M;

std::atomic<bool>& done; std::promise<Iter>& p;

Searcher(...); // obvious constructor impl

void operator()() {

for(Iter it=first;it!=last && !done;++it) {

if(*it==M) {

try { p.set_value(it); }

catch(std::future_error) {}

done=true; return;

} } }

};

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Map/Reduce

−→



Map/Reduce (I)

An algorithm in two halves:

Map: x[i] → f(x[i])

Reduce: Accumulate the results
(e.g.

∑
f(x[i]))

(Aside: Google’s MapReduce
operates on key/value pairs)

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Map/Reduce (II)

Scales well with multiple cores

Used in OpenMP and MPI

Covers many parallel algorithms

The map and reduce operations
must be thread-safe

The overhead depends on the data
granularity

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Map/Reduce (III): Word count

typedef std::map<std::string,unsigned> map_type;

map_type count_words(word_list const& words) {

map_type counts;

std::string word;

while(words.get_next(word))

++counts[s];

return counts;

}

map_type combine_maps(

map_type counts,map_type const& other) {

for(auto const& entry: other)

counts[entry.first]+=entry.second;

return counts;

}

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Dataflow



Dataflow (I)

You specify the relationships, and
the runtime handles the
parallelization

Has a “Functional Programming”
style feel, even in imperative
languages

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Dataflow (II): Simple Variables

int main() {

jss::dataflow::variable<int> x,y,z;

z.task([&]{return x.get()+y.get();});

x=23;

y=19;

assert(z.get()==42);

}

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Dataflow (III): Channels

int main() {

int const count=100;

jss::dataflow::channel<int> x,y,z;

jss::dataflow::task([&]{

while(true) { z<<(x.pop()+y.pop()); }});

jss::dataflow::task([&x]{

for(int i=0;i<count;++i) { x<<rand()%20; }});

jss::dataflow::task([&y]{

for(int i=0;i<count;++i) { y<<rand()%20; }});

for(int i=0;i<count;++i) { std::cout<<z.pop()<<’\n’; }

}

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Dataflow (IV)

Dataflow concurrency is an
extension of the pipeline pattern to
a general DAG

The runtime provides facilities to
split, filter and combine channels

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Communication Patterns



Communication Patterns

Read Only Data

Mutexes and Locks

Futures

Queues and Channels

Other Data Structures Designed
for Concurrent Access

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Mutexes and Locks



Mutexes and Locks (I)

Explicitly limit concurrency!

Low level mechanism

Good for migrating sequential code

Wrappers such as
synchronized value<T> can
avoid correctness issues

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Mutexes and Locks (II): synchronized value<T>

void foo(jss::synchronized_value<std::string>& s) {

std::string local=*s;

s->append("foo");

jss::update_guard<std::string> guard(s);

unsigned pos=guard->find("f");

if(pos==std::string::npos)

*guard += "bar";

else

(*guard)[pos] = ’b’;

}

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Futures



Futures (I)

Synchronization is internal to
library

Read and write operations are
explicit

One-shot communication

Every task framework has some
form of future

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Futures (II)

In C++0x, futures are used with:
std::async, as in the fork/join
example
std::promise, as in the search
example
std::packaged task, a building
block for task queues and thread
pools

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Queues and Channels



Queues and Channels (I)

Allow multiple data items to be
transferred

Fundamental to message-passing
systems

Myriad of choices:
SP/MP, SC/MC, bounded/unbounded, etc.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Queues and Channels (II): Bounded vs Unbounded

Bounded Queues limit the
number of items in the queue
⇒ Producer blocks if the queue is full

Unbounded Queues have no such
limit
⇒ May consume a lot of memory if producer

runs faster than consumer

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Queues and Channels (III): Bounded vs Unbounded

Unbounded queues handle
“bursty” data better

Bounded queues even out the
processing

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Queues and Channels (IV): SPSC and MPSC

Single Producer Single Consumer
⇒ one-to-one channel between 2 threads, actors

or tasks

Multiple Producer Single
Consumer
⇒ standard “message passing” queue, such as

an Actor’s mailbox

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Queues and Channels (V): SPMC and MPMC

Single Producer Multiple
Consumer
⇒ broadcast channel

Multiple Producer Multiple
Consumer
⇒ general purpose queue

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Queues and Channels (VI)

Special-purpose queues may have
additional properties

Work-stealing queues

Dataflow channels

Priority queues

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Other Data Structures Designed for
Concurrent Access



Other Data Structures Designed for Concurrent Access (I)

More than one thread can access
the data structure concurrently,
without either one waiting for the
other

There may be restrictions on
which operations can be called
concurrently

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Other Data Structures Designed for Concurrent Access (II)

Stacks

Hash tables

Other variations on lists, sets,
maps and queues

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Concurrent Hash Tables (I)

Allow concurrent queries and
modifications

May allow concurrent removal

May allow concurrent iteration

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Concurrent Hash Tables (II)

Use for lookup tables — e.g. find
user information by ID

Cache results — e.g. DNS queries

Can be faster than map/reduce on
SMP systems

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Concurrent Hash Tables (III): Word count

typedef jss::concurrent_map<

std::string,std::atomic<unsigned>> map_type;

void count_words(

map_type& counts, word_list const& words) {

std::string word;

while(words.get_next(word)) {

std::pair<map_type::iterator,bool>

value=counts.insert(s,1);

if(!value.second)

++(value.first->second);

}

}

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Other Concurrent Data Structures

Skip lists: Java provides
ConcurrentSkipListMap and
ConcurrentSkipListSet

TBB has concurrent vector

More complex data structures end
up with a mutex lock

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Choosing your patterns



Choosing your patterns (I)

What style of problem is it?

event-driven

recursive

embarassingly parallel

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Choosing your patterns (II)

What level of the application are we
at?

top level

background processing

inner loop

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Choosing your patterns (III)

How can we best split the tasks and
data?

few/many tasks

small/large amounts of data

simple/complex interactions

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Choosing your patterns (IV)

What scale are we at?

Single multi-core processor

Multiple multi-core processors

Local cluster

Globally distributed

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.justsoftwaresolutions.co.uk


Further Reading

Patterns for Parallel Programming, Timothy G. Mattson,
Bervely A. Sanders, Berna L. Massingill, Addison Wesley.

Programming Scala, Dean Wampler, Alex Payne, O’Reilly
Media (Available online)

The GPars Project — Reference Documentation
(Available online)

Concurrent Programming in Erlang, Joe Armstrong,
Robert Virding, Claes Wikström, Mike Williams, Prentice
Hall

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://programming-scala.labs.oreilly.com/index.html
http://www.gpars.org/guide/guide/
http://www.justsoftwaresolutions.co.uk


just::thread provides a complete implementation of the C++0x thread
library for MSVC 2005, 2008 and 2010, and g++ 4.3, 4.4 and 4.5 for

Ubuntu/Debian/Fedora. MacOSX support coming soon.
For a 50% discount go to:

http://www.stdthread.co.uk/accu2011

Just::Thread Pro also coming soon, with support for many of the high level
facilities shown in this presentation. Find out more at:

http://www.stdthread.co.uk/pro

http://www.stdthread.co.uk/accu2011
http://www.stdthread.co.uk/pro


My book

C++ Concurrency in Action: Practical
Multithreading with the new C++
Standard, currently available under the
Manning Early Access Program, and
due to be printed this summer.

http://www.stdthread.co.uk/book/

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.stdthread.co.uk/book/
http://www.justsoftwaresolutions.co.uk


Photo credits

The images used in this presentation are courtesy of:

Daniela Hartmann Florian Seroussi
Mary Harrsch nicolas genin
Eric Gilliland Barbara Doduk
Danie Ware Pascal
Paul Hughes ClayOgre

Travis subblue
Ordnance Survey OpenData

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Picking Patterns for Parallel Programs

http://www.flickr.com/photos/29487767@N02/2866453076/
http://www.flickr.com/photos/cizake/4164756091/
http://www.flickr.com/photos/mharrsch/131991820/
http://www.flickr.com/photos/nicogenin/3349414489/
http://www.flickr.com/photos/biketrip2006/3641406443/
http://www.flickr.com/photos/barbaradoduk/2518930609/
http://www.flickr.com/photos/danacea/2981199996/
http://www.flickr.com/photos/pasukaru76/3998273279/
http://www.flickr.com/photos/paulshughes/4167965483/
http://www.flickr.com/photos/7377389@N08/486963228/
http://www.flickr.com/photos/baggis/225007470/
http://www.flickr.com/photos/subblue/2509049835/
https://www.ordnancesurvey.co.uk/opendatadownload/products.html
http://www.justsoftwaresolutions.co.uk

