
The Future of Concurrency
in C++

Anthony Williams

Just Software Solutions Ltd
http://www.justsoftwaresolutions.co.uk

3rd April 2008

http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

Multithreading Support in C++0x

Existing proposals for TR2

Beyond TR2

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Multithreading Support in C++0x

The Standard now acknowledges the existence of
multi-threaded programs

New memory model

Support for thread-local static variables

Thread Support Library

Threads
Mutexes
Condition Variables
One time initialization
Asynchronous results — futures

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

C++0x Thread Library and Boost

Two-way relationship with Boost

Proposals for multithreading heavily influenced by
Boost.Thread library
Boost 1.35.0 Thread library revised in line with C++0x
working draft

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Atomics and memory model

Define the rules for making data visible between threads

Atomics are generally for experts only

If you correctly use locks, everything “just works”

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Synchronizing Data

There are two critical relationships between operations:

Synchronizes-with relation

Store-release synchronizes-with a load-acquire

Happens-before relation

A sequenced before B in a single thread
A synchronizes-with B
A happens-before X, X happens-before B

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Data races

A data race occurs when:

Two threads access non-atomic data

At least one access is a write

There is no happens-before relation between the accesses

A lot of multithreaded programming is about avoiding data
races

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Memory Ordering Constraints

Sequential Consistency

Single total order for all SC ops on all variables
default

Acquire/Release

Pairwise ordering rather than total order
Independent Reads of Independent Writes don’t require
synchronization between CPUs

Relaxed Atomics

Read or write data without ordering
Still obeys happens-before

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Relaxed Ordering

I n i t i a l l y x=0 , y=0

S t o r e x = 1

S t o r e y = 1

L o a d y = = 1

L o a d x = = 0

R e l a x e dR e l e a s e

R e l e a s e

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Acquire-Release Ordering

I n i t i a l l y x=0 , y=0

S t o r e x = 1

S t o r e y = 1

L o a d y = = 1

L o a d x = = 1

A c q u i r eR e l e a s e

R e l e a s e

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Acquire-Release Ordering

I n i t i a l l y x=0 , y=0

S t o r e x = 1 S t o r e y = 1

L o a d x = = 1

L o a d y = = 0

A c q u i r e

R e l e a s e R e l e a s e

L o a d y = = 1

L o a d x = = 0

A c q u i r e

A c q u i r eA c q u i r e

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Sequentially Consistent Ordering

I n i t i a l l y x=0 , y=0

S t o r e x = 1 S t o r e y = 1

L o a d x = = 1

L o a d y = = 1

S C

S C S C

L o a d y = = 1

L o a d x = = 0

S C

S CS C

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Basic interface for atomics

atomic flag
Boolean flag
Must be lock-free

Atomic integeral types — e.g. atomic char, atomic uint,
atomic llong

Includes arithmetic operators such as a++, and a|=5
Operators return underlying type by value, not reference
May not be lock-free — use a.is lock free() to check

atomic address
Represents a void*
May not be lock-free — use a.is lock free() to check

Free functions for C compatibility

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Generic interface for atomics

atomic<T>

derived from atomic T for built-in integral and pointer types

works with ”trivially default constructible and bitwise equality
comparable” types

Lock-free where possible

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Compare and Swap

Generally put in loop

Spurious failure
Other thread may change value anyway

atomic<int> a;
int desired;
int expected=a;

do
{

desired=function(expected);
}
while(!a.compare_swap(expected,desired));

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Fences

Per-object fences: a.fence(memory order)
— RMW op which writes same value back.

Global fences with atomic global fence compatibility
object (of type atomic flag)

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Thread launching

std::thread t(func,arg1,arg2);

– std::bind semantics

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Joining a Thread

std::thread t(func);
t.join();

A thread can only be joined once.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Detaching a Thread

Explicitly:

std::thread t1(func);
t1.detach();

Implicitly:

{
std::thread t2(func);

} // destructor of t2 calls detach()

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Transferring Ownership

At most one std::thread object per thread.

Thread objects are movable

Can return std::thread from functions

std::thread start_process(some_args);

Can store std::thread objects in standard containers

std::vector<std::thread> vec;
vec.push_back(std::thread(some_func));

Can use t.joinable() to determine if an object has an
associated thread.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Identifying Threads

Every thread has a unique ID

Thread IDs represented by instances of std::thread::id

Value Type: copyable, usable in comparisons
Non-equal values form a total order
Can be used as keys in associative containers and unordered
associative containers
Can be written to an output stream
Default constructed ID is ”Not any Thread”.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Obtaining Thread IDs

std::this thread::get id()
returns the ID of the current thread

t.get id()
Returns the ID of the thread associated with the
std::thread instance t

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Mutexes

There are four mutex types in the current working paper:

std::mutex

std::recursive mutex

std::timed mutex

std::recursive timed mutex

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Locking

lock() and unlock() member functions are public

Scoped locking:

std::lock guard template
std::unique lock template

movable, supports deferred locking, timed locking
can itself be used as a “mutex”.

Generic lock() function
— Allows locking of more than one mutex without deadlock

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Condition Variables

Two types of condition variables:

std::condition variable
std::condition variably any

The difference is the lock parameter to the wait functions:

void condition variable::wait(
unique lock<std::mutex>& lock);
template<typename lock type>
void condition variable any::wait(
lock type& lock);

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Condition Variables and Predicates

Condition variables are subject to spurious wakes

Correct usage requires a loop:

std::unique_lock<std::mutex> lk(some_mutex);
while(!can_continue())
{

some_cv.wait(lk);
}

Predicate version makes things simpler:

std::unique_lock<std::mutex> lk(some_mutex);
some_cv.wait(lk,&can_continue);

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Timed waits with condition variables

The overload of condition variable::timed wait() that
takes a duration is particularly error-prone:

while(!can_continue())
{

some_cv.timed_wait(lk,std::milliseconds(3));
}

This may actually be equivalent to just using wait(), in the
event of spurious wake-ups

The predicate overload avoids this problem:

some_cv.timed_wait(lk,std::milliseconds(3),
&can_continue);

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

One-time Initialization

Provided by std::call once

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

General Usage of call once

std::once_flag flag;

std::call_once(flag,some_function);
// calls some_function()

std::call_once(flag,some_other_function,arg1,arg2);
// calls some_other_function(arg1,arg2)

– std::bind semantics again

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Lazy initialization of class members

class X
{

some_resource_handle h;
std::once_flag flag;
void init_resource();

public:
X():h(no_resource){}
void do_something()
{

std::call_once(flag,&X::init_resource,this);
really_do_something(h);

}
};

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Thread-local static variables

Not yet in WP: N2545 by Lawrence Crowl

Each thread has its own instance of the variable

Use the thread local keyword:
static thread local int x;

Any variable with static storage duration can be declared
thread local:

Namespace-scope variables
static data members of classes
static variables declared at block scope

thread local variables can have constructors and
destructors.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Asynchronous Value Computation

Not yet in WP: N2561
— Deltef Vollman, Howard Hinnant and myself

Value is result of a task running on another thread.

No control over how or when value is computed by recipient.

Answer to how to return a value from a thread.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Futures

Two templates for futures:

std::unique future<T> — like std::unique ptr<T>
sole owner
read once (move)

std::shared future<T> — like std::shared ptr<T>
multiple owners
can be read multiple times (copy)

Can move a std::unique future<T> into a
std::shared future<T>

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Getting the values: std::unique future<T>

R move()
blocks until ready
throws if already moved
throws if future has a stored exception

bool try move(R&)
returns false if not ready() or already moved.

State query functions:
is ready(), has value(), has exception(), was moved()

Wait for ready:
wait(), timed wait()

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Getting the value: std::shared future<T>

R const& get()
operator R const&()

Blocks until ready
Returns reference to stored value
Throws if future has a stored exception

bool try get(R&)

State Query functions:
is ready(), has value(), has exception()
No was moved() has the result can’t be moved

Wait for ready:
wait(), timed wait()

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Generating Asynchronous values

Two ways of generating asynchronous values:

std::packaged task<T>
— value is the result of a function call

std::promise<T>
— explicit functions for populating the value

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Packaged Tasks

A std::packaged task<T> is like std::function<T()> —
it wraps any function or callable object, and invokes it when
std::packaged task<T>::operator() is invoked.

Return value populates a std::unique future<T> rather
than being returned to caller

Simplest way to get the return value from a thread

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Returning a value from a thread with
std::packaged task<T>

template<typename Callable>
std::unique_future<std::result_of<Callable()>::type>
run_in_thread(Callable func)
{

typedef std::result_of<Callable()>::type rtype;
std::packaged_task<rtype> task(std::move(func));
std::unique_future<rtype> res(task.get_future());
std::thread(std::move(task)).detach();
return std::move(res);

}

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Promises

Value can come from any number of possible sources
— e.g. first worker in pool to calculate result

More explicit interface:

p.set value(some value)
p.set exception(some exception)

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

TR2

Already some proposals for C++0x which have been
retargeted to TR2

shared mutex, upgrade mutex (from N2094)

thread pools (from N2094, N2185, N2276)

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

shared mutex

Provides a multiple-reader/single-writer mutex

single writer:

m.lock()/m.unlock()
std::unique lock<shared mutex>

multiple readers:

m.lock shared()/m.unlock shared()
shared lock<shared mutex>

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

upgrade mutex

multiple readers + single upgrader / single writer

The one and only upgrader can upgrade to a writer

Blocks until all readers have finished
Prevents other writers acquiring lock
Allows thread to rely on data read prior to upgrade

Lock/unlock upgrader with:

m.lock upgrade()/m.unlock upgrade()
upgrade lock<upgrade mutex>

Upgrade with:

m.unlock upgrade and lock()
Move-construction of an upgrade lock<upgrade mutex> to
unique lock<upgrade mutex>

Locks can be downgraded

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

boost::shared mutex

In boost 1.35.0, boost::shared mutex provides all this
functionality.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

Thread Pools

Universal agreement that we need to provide some kind of
thread pool support.

Exact API is not yet clear.

N2094, N2185, N2276 provide distinct but similar APIs.

Philipp Henkel has written a thread pool library that works
with boost
— http://threadpool.sourceforge.net.

Yigong Liu’s Join library provides an alternative approach
— http://channel.sourceforge.net

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://threadpool.sourceforge.net
http://channel.sourceforge.net
http://www.justsoftwaresolutions.co.uk

TR2 and beyond I

Thread Interruption

Present in Boost 1.35.0
Interrupt a thread by calling t.interrupt() on a thread
object t.
Thread throws thread interrupted exception at next
interruption point
Interruption points include condition variable::wait(),
this thread::sleep() and interruption point()
Interruption can be disabled with instances of
disable interruption
The thread interrupted exception can be caught: the
thread can then be interrupted again

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.justsoftwaresolutions.co.uk

TR2 and beyond II

Thread-safe containers:

concurrent queue
concurrent stack
concurrent list
concurrent unordered map

Parallel algorithms

parallel find
parallel sort
parallel accumulate
parallel for

Intel TBB provides some of these
— http://threadingbuildingblocks.org/

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://threadingbuildingblocks.org/
http://www.justsoftwaresolutions.co.uk

TR2 and beyond III

Software Transactional Memory (STM)
Allows for ACID guarantees in concurrent code, just like in
databases

OpenMP (http://www.openmp.org)
A set of compiler directives to highlight code that should be
run in parallel

Auto-parallelisation in compilers
A step beyond OpenMP — compilers identify parallelizable
regions automatically.
The current Intel compiler has basic support for this, with the
-parallel command-line option.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.openmp.org
http://www.justsoftwaresolutions.co.uk

References and Further Reading

The current C++0x working paper: N2588
http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2008/n2588.pdf

The Boost 1.35.0 thread docs
http://www.boost.org/doc/libs/1_35_0/doc/html/
thread.html

The futures proposal: N2561
http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2008/n2561.html

My book: C++ Concurrency in Action: Practical
Multithreading, due to be published by Manning end of
2008/early 2009.

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

The Future of Concurrency in C++

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2588.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2588.pdf
http://www.boost.org/doc/libs/1_35_0/doc/html/thread.html
http://www.boost.org/doc/libs/1_35_0/doc/html/thread.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2561.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2561.html
http://www.justsoftwaresolutions.co.uk

