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Multithreading Support in C++0x

Existing proposals for TR2

Beyond TR2
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Multithreading Support in C++0x

The Standard now acknowledges the existence of
multi-threaded programs

New memory model

Support for thread-local static variables

Thread Support Library

Threads
Mutexes
Condition Variables
One time initialization
Asynchronous results — futures
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C++0x Thread Library and Boost

Two-way relationship with Boost

Proposals for multithreading heavily influenced by
Boost.Thread library
Boost 1.35.0 Thread library revised in line with C++0x
working draft
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Atomics and memory model

Define the rules for making data visible between threads

Atomics are generally for experts only

If you correctly use locks, everything “just works”
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Synchronizing Data

There are two critical relationships between operations:

Synchronizes-with relation

Store-release synchronizes-with a load-acquire

Happens-before relation

A sequenced before B in a single thread
A synchronizes-with B
A happens-before X, X happens-before B
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Data races

A data race occurs when:

Two threads access non-atomic data

At least one access is a write

There is no happens-before relation between the accesses

A lot of multithreaded programming is about avoiding data
races
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Memory Ordering Constraints

Sequential Consistency

Single total order for all SC ops on all variables
default

Acquire/Release

Pairwise ordering rather than total order
Independent Reads of Independent Writes don’t require
synchronization between CPUs

Relaxed Atomics

Read or write data without ordering
Still obeys happens-before
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Relaxed Ordering

I n i t i a l l y  x=0 ,  y=0

S t o r e  x = 1

S t o r e  y = 1

L o a d  y = = 1

L o a d  x = = 0

R e l a x e dR e l e a s e

R e l e a s e
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Acquire-Release Ordering

I n i t i a l l y  x=0 ,  y=0

S t o r e  x = 1

S t o r e  y = 1

L o a d  y = = 1

L o a d  x = = 1

A c q u i r eR e l e a s e

R e l e a s e
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Acquire-Release Ordering
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Sequentially Consistent Ordering

I n i t i a l l y  x=0 ,  y=0

S t o r e  x = 1 S t o r e  y = 1

L o a d  x = = 1

L o a d  y = = 1

S C

S C S C

L o a d  y = = 1

L o a d  x = = 0

S C

S CS C
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Basic interface for atomics

atomic flag
Boolean flag
Must be lock-free

Atomic integeral types — e.g. atomic char, atomic uint,
atomic llong

Includes arithmetic operators such as a++, and a|=5
Operators return underlying type by value, not reference
May not be lock-free — use a.is lock free() to check

atomic address
Represents a void*
May not be lock-free — use a.is lock free() to check

Free functions for C compatibility
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Generic interface for atomics

atomic<T>

derived from atomic T for built-in integral and pointer types

works with ”trivially default constructible and bitwise equality
comparable” types

Lock-free where possible
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Compare and Swap

Generally put in loop

Spurious failure
Other thread may change value anyway

atomic<int> a;
int desired;
int expected=a;

do
{

desired=function(expected);
}
while(!a.compare_swap(expected,desired));
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Fences

Per-object fences: a.fence(memory order)
— RMW op which writes same value back.

Global fences with atomic global fence compatibility
object (of type atomic flag)
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Thread launching

std::thread t(func,arg1,arg2);

– std::bind semantics
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Joining a Thread

std::thread t(func);
t.join();

A thread can only be joined once.
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Detaching a Thread

Explicitly:

std::thread t1(func);
t1.detach();

Implicitly:

{
std::thread t2(func);

} // destructor of t2 calls detach()
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Transferring Ownership

At most one std::thread object per thread.

Thread objects are movable

Can return std::thread from functions

std::thread start_process(some_args);

Can store std::thread objects in standard containers

std::vector<std::thread> vec;
vec.push_back(std::thread(some_func));

Can use t.joinable() to determine if an object has an
associated thread.
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Identifying Threads

Every thread has a unique ID

Thread IDs represented by instances of std::thread::id

Value Type: copyable, usable in comparisons
Non-equal values form a total order
Can be used as keys in associative containers and unordered
associative containers
Can be written to an output stream
Default constructed ID is ”Not any Thread”.
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Obtaining Thread IDs

std::this thread::get id()
returns the ID of the current thread

t.get id()
Returns the ID of the thread associated with the
std::thread instance t
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Mutexes

There are four mutex types in the current working paper:

std::mutex

std::recursive mutex

std::timed mutex

std::recursive timed mutex
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Locking

lock() and unlock() member functions are public

Scoped locking:

std::lock guard template
std::unique lock template

movable, supports deferred locking, timed locking
can itself be used as a “mutex”.

Generic lock() function
— Allows locking of more than one mutex without deadlock
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Condition Variables

Two types of condition variables:

std::condition variable
std::condition variably any

The difference is the lock parameter to the wait functions:

void condition variable::wait(
unique lock<std::mutex>& lock);
template<typename lock type>
void condition variable any::wait(
lock type& lock);
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Condition Variables and Predicates

Condition variables are subject to spurious wakes

Correct usage requires a loop:

std::unique_lock<std::mutex> lk(some_mutex);
while(!can_continue())
{

some_cv.wait(lk);
}

Predicate version makes things simpler:

std::unique_lock<std::mutex> lk(some_mutex);
some_cv.wait(lk,&can_continue);
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Timed waits with condition variables

The overload of condition variable::timed wait() that
takes a duration is particularly error-prone:

while(!can_continue())
{

some_cv.timed_wait(lk,std::milliseconds(3));
}

This may actually be equivalent to just using wait(), in the
event of spurious wake-ups

The predicate overload avoids this problem:

some_cv.timed_wait(lk,std::milliseconds(3),
&can_continue);
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One-time Initialization

Provided by std::call once
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General Usage of call once

std::once_flag flag;

std::call_once(flag,some_function);
// calls some_function()

std::call_once(flag,some_other_function,arg1,arg2);
// calls some_other_function(arg1,arg2)

– std::bind semantics again
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Lazy initialization of class members

class X
{

some_resource_handle h;
std::once_flag flag;
void init_resource();

public:
X():h(no_resource){}
void do_something()
{

std::call_once(flag,&X::init_resource,this);
really_do_something(h);

}
};
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Thread-local static variables

Not yet in WP: N2545 by Lawrence Crowl

Each thread has its own instance of the variable

Use the thread local keyword:
static thread local int x;

Any variable with static storage duration can be declared
thread local:

Namespace-scope variables
static data members of classes
static variables declared at block scope

thread local variables can have constructors and
destructors.
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Asynchronous Value Computation

Not yet in WP: N2561
— Deltef Vollman, Howard Hinnant and myself

Value is result of a task running on another thread.

No control over how or when value is computed by recipient.

Answer to how to return a value from a thread.
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Futures

Two templates for futures:

std::unique future<T> — like std::unique ptr<T>
sole owner
read once (move)

std::shared future<T> — like std::shared ptr<T>
multiple owners
can be read multiple times (copy)

Can move a std::unique future<T> into a
std::shared future<T>
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Getting the values: std::unique future<T>

R move()
blocks until ready
throws if already moved
throws if future has a stored exception

bool try move(R&)
returns false if not ready() or already moved.

State query functions:
is ready(), has value(), has exception(), was moved()

Wait for ready:
wait(), timed wait()
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Getting the value: std::shared future<T>

R const& get()
operator R const&()

Blocks until ready
Returns reference to stored value
Throws if future has a stored exception

bool try get(R&)

State Query functions:
is ready(), has value(), has exception()
No was moved() has the result can’t be moved

Wait for ready:
wait(), timed wait()
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Generating Asynchronous values

Two ways of generating asynchronous values:

std::packaged task<T>
— value is the result of a function call

std::promise<T>
— explicit functions for populating the value
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Packaged Tasks

A std::packaged task<T> is like std::function<T()> —
it wraps any function or callable object, and invokes it when
std::packaged task<T>::operator() is invoked.

Return value populates a std::unique future<T> rather
than being returned to caller

Simplest way to get the return value from a thread
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Returning a value from a thread with
std::packaged task<T>

template<typename Callable>
std::unique_future<std::result_of<Callable()>::type>
run_in_thread(Callable func)
{

typedef std::result_of<Callable()>::type rtype;
std::packaged_task<rtype> task(std::move(func));
std::unique_future<rtype> res(task.get_future());
std::thread(std::move(task)).detach();
return std::move(res);

}
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Promises

Value can come from any number of possible sources
— e.g. first worker in pool to calculate result

More explicit interface:

p.set value(some value)
p.set exception(some exception)
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TR2

Already some proposals for C++0x which have been
retargeted to TR2

shared mutex, upgrade mutex (from N2094)

thread pools (from N2094, N2185, N2276)
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shared mutex

Provides a multiple-reader/single-writer mutex

single writer:

m.lock()/m.unlock()
std::unique lock<shared mutex>

multiple readers:

m.lock shared()/m.unlock shared()
shared lock<shared mutex>
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upgrade mutex

multiple readers + single upgrader / single writer

The one and only upgrader can upgrade to a writer

Blocks until all readers have finished
Prevents other writers acquiring lock
Allows thread to rely on data read prior to upgrade

Lock/unlock upgrader with:

m.lock upgrade()/m.unlock upgrade()
upgrade lock<upgrade mutex>

Upgrade with:

m.unlock upgrade and lock()
Move-construction of an upgrade lock<upgrade mutex> to
unique lock<upgrade mutex>

Locks can be downgraded
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boost::shared mutex

In boost 1.35.0, boost::shared mutex provides all this
functionality.
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Thread Pools

Universal agreement that we need to provide some kind of
thread pool support.

Exact API is not yet clear.

N2094, N2185, N2276 provide distinct but similar APIs.

Philipp Henkel has written a thread pool library that works
with boost
— http://threadpool.sourceforge.net.

Yigong Liu’s Join library provides an alternative approach
— http://channel.sourceforge.net
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TR2 and beyond I

Thread Interruption

Present in Boost 1.35.0
Interrupt a thread by calling t.interrupt() on a thread
object t.
Thread throws thread interrupted exception at next
interruption point
Interruption points include condition variable::wait(),
this thread::sleep() and interruption point()
Interruption can be disabled with instances of
disable interruption
The thread interrupted exception can be caught: the
thread can then be interrupted again
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TR2 and beyond II

Thread-safe containers:

concurrent queue
concurrent stack
concurrent list
concurrent unordered map

Parallel algorithms

parallel find
parallel sort
parallel accumulate
parallel for

Intel TBB provides some of these
— http://threadingbuildingblocks.org/
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TR2 and beyond III

Software Transactional Memory (STM)
Allows for ACID guarantees in concurrent code, just like in
databases

OpenMP (http://www.openmp.org)
A set of compiler directives to highlight code that should be
run in parallel

Auto-parallelisation in compilers
A step beyond OpenMP — compilers identify parallelizable
regions automatically.
The current Intel compiler has basic support for this, with the
-parallel command-line option.
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References and Further Reading

The current C++0x working paper: N2588
http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2008/n2588.pdf

The Boost 1.35.0 thread docs
http://www.boost.org/doc/libs/1_35_0/doc/html/
thread.html

The futures proposal: N2561
http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2008/n2561.html

My book: C++ Concurrency in Action: Practical
Multithreading, due to be published by Manning end of
2008/early 2009.
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