
Dataflow, actors and high level structures in
concurrent applications

Anthony Williams

Just Software Solutions Ltd
http://www.justsoftwaresolutions.co.uk

26th April 2012

http://www.justsoftwaresolutions.co.uk

Aims of High Level Approaches

Make it easier to write applications
that ...

Scale with hardware

Are obviously correct rather
than having no obvious
problems — C.A.R. Hoare

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Aspects of Application Design

4 Aspects:

Tasks

Communication

State

Concurrency

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

High Level Approaches

Actors

Active Objects

Dataflow

Loop Parallelism

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

High Level Approaches

Actors

Active Objects

Dataflow

Loop Parallelism

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Actors

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Actors in Erlang

Process ≡ Actor

Messages are a language feature

Guaranteed isolation

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

-export([ping/2, pong/0]).

ping(0, Pong_PID) ->

Pong_PID ! finished,

io:format("ping finished~n", []);

ping(N, Pong_PID) ->

Pong_PID ! {ping, self()},

receive

pong ->

io:format("Ping received pong~n", [])

end,

ping(N - 1, Pong_PID).

pong() ->

receive

finished ->

io:format("Pong finished~n", []);

{ping, Ping_PID} ->

io:format("Pong received ping~n", []),

Ping_PID ! pong,

pong()

end.

main(_) ->

Pong_PID = spawn(?MODULE, pong, []),

spawn(?MODULE, ping, [5, Pong_PID]),

timer:sleep(1000).

-export([source/2, target/0]).

source(0, Target_PID) ->

Target_PID ! finished,

io:format("source finished~n", []);

source(N, Target_PID) ->

io:format("source sending message ~w~n", [N]),

Target_PID ! {message,N},

source(N - 1, Target_PID).

dump_messages() ->

receive

{message,N} ->

io:format("Target received message ~w~n", [N]),

dump_messages()

end.

target() ->

receive

finished ->

io:format("Target finished~n", []),

dump_messages()

end.

main(_) ->

Target_PID = spawn(?MODULE, target, []),

spawn(?MODULE, source, [5, Target_PID]),

timer:sleep(1000).

target() ->

receive

finished ->

io:format("Target finished~n", []),

dump_messages();

_ ->

io:format("Unexpected message~n", []),

target()

end.

Dynamic actors

Actors can be started dynamically
⇒ can add new actors in response
to messages

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

chain_sieve(My_prime,Next_sieve) ->

receive

N -> if (N rem My_prime) == 0 -> true;

true ->

Next_sieve ! N

end

end,

chain_sieve(My_prime,Next_sieve).

sieve(My_prime) ->

io:format("~w~n",[My_prime]),

receive

N ->

if (N rem My_prime) == 0 ->

sieve(My_prime);

true ->

Next_sieve = spawn(?MODULE,sieve,[N]),

chain_sieve(My_prime,Next_sieve)

end

end.

Actors in C++

Actor ≈ Thread

Actors are a library facility

Isolation by programmer discipline

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

struct ping { jss::actor_ref sender; };

struct pong {};

struct finished {};

void pingfunc(unsigned n,jss::actor_ref pong_id){

while(n--) {

pong_id << ping{jss::actor::self()};

jss::actor::receive().match<pong>(

[](pong){

std::cout<<"ping received pong\n";

});

}

pong_id << finished();

std::cout<<"ping finished\n";

}

void pongfunc() {

bool done=false;

while(!done) {

jss::actor::receive()

.match<ping>(

[](ping p){

std::cout<<"pong received ping\n";

p.sender << pong();

})

.match<finished>(

[&](finished){

std::cout<<"pong finished\n";

done=true;

});

}

}

Actors in Scala

Actors may share threads

Actors are a library facility

Isolation by programmer discipline

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

case object Ping

case object Pong

case object Finished

class Ping(count: Int, pong: Actor) extends Actor {

def act() {

var pingsLeft = count

while(pingsLeft > 0) {

pong ! Ping

receive {

case Pong =>

Console.println("Ping received pong")

}

pingsLeft -= 1

}

Console.println("Ping finished")

pong ! Finished

}

}

class Pong extends Actor {

def act() {

loop {

react {

case Ping =>

Console.println("Pong received ping ")

sender ! Pong

case Finished =>

Console.println("Pong finished")

exit()

}

}

}

}

Actors as state machines

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Actors as state machines (I)

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Actors as state machines (II)

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Actors as state machines (III)

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

class atm {

actor_ref bank;

actor_ref interface_hardware;

void (atm::*state)();

std::string account;

unsigned withdrawal_amount;

std::string pin;

public:

void operator()() {

state=&atm::waiting_for_card;

for(;;) {

(this->*state)();

}

}

};

void wait_for_action() {

interface_hardware<<display_withdrawal_options();

actor::receive()

.match<withdraw_pressed>(

[&](withdraw_pressed const& msg) {

withdrawal_amount=msg.amount;

bank<<withdraw{account,msg.amount,actor::self()};

state=&atm::process_withdrawal;

})

.match<balance_pressed>(

[&](balance_pressed const&) {

bank<<get_balance{account,actor::self()};

state=&atm::process_balance;

})

.match<cancel_pressed>(

[&](cancel_pressed const&) {

state=&atm::done_processing;

});

}

Actors: Summary

Tasks Master function,
message handlers

Communication Message queues

State Actor’s internal
state

Concurrency Limited to number
of actors

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

High Level Approaches

Actors

Active Objects

Dataflow

Loop Parallelism

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Active Objects

Special sort of actor

Send messages by method calls

Results returned in a future

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Active Objects in Groovy

Annotate the class with
@ActiveObject

Annotate the method with
@ActiveMethod

The return type is
DataflowVariable

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

@ActiveObject

class DeepThought {

@ActiveMethod

def findTheAnswerToLifeTheUniverseAndEverything() {

println "Thinking"

sleep 5000

println "Answer Ready"

return 42

}

}

final DeepThought dt=new DeepThought()

def theAnswer=dt.findTheAnswerToLifeTheUniverseAndEverything()

println "Doing stuff"

sleep 2000

println "Waiting"

println "The answer is ${theAnswer.get()}"

Active Objects in C++

Do it manually with an actor

Explicitly declare the return type
as a future

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

struct find_the_answer{std::promise<int> promise;};

static void actor_loop() {

for(;;){

jss::actor::receive().match<find_the_answer>(

[](find_the_answer fta) {

std::cout<<"Thinking\n";

std::this_thread::sleep_for(

std::chrono::seconds(5));

std::cout<<"Answer ready\n";

fta.promise.set_value(42);

});

}

}

std::future<int> findTheAnswerToLifeTheUniverseAndEverything()

{

find_the_answer fta;

std::future<int> res=fta.promise.get_future();

internal_actor<<std::move(fta);

return res;

}

int main(){

DeepThought dt;

auto answer=dt.findTheAnswerToLifeTheUniverseAndEverything();

std::cout<<"Doing stuff\n";

std::this_thread::sleep_for(std::chrono::seconds(2));

std::cout<<"Waiting\n";

answer.wait();

std::cout<<"The answer is "<<answer.get()<<std::endl;

}

Active Objects: Summary

Tasks Active methods

Communication Method calls,
futures

State Active Object’s
internal state

Concurrency Limited to number
of Active Objects

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

High Level Approaches

Actors

Active Objects

Dataflow

Loop Parallelism

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Dataflow Architectures (I)

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Dataflow Architectures (II)

Primary concern is the flow of
data between tasks

Tasks may be 1-1, 1-Many,
Many-1 or Many-Many

Tasks may have state

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Dataflow Architectures (III)

Basic task types include:

Generators

Filters

Routing operations

Transforms

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Dataflow Architectures (IV)

May define flows for:

1 set of inputs ⇒ 1 set of outputs

A series of sets of inputs ⇒ a
series of sets of outputs

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Dataflow Variables

Write-once

May be assigned a value explicitly

Value may be computed by a task

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Dataflow variables in Groovy

import groovyx.gpars.dataflow.DataflowVariable

import static groovyx.gpars.dataflow.Dataflow.task

final def a=new DataflowVariable()

final def b=task{

return a.val + 10

}

a<<5;

println "Result: ${b.val}"

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Dataflow variables in C++

#include <jss/dataflow.hpp>

#include <iostream>

jss::dataflow::variable<int> a;

jss::dataflow::variable<int> b;

int main(){

b.task([]{

return a.get()+10;

});

a=5;

std::cout<<"Result: "<<b.get()<<std::endl;

}

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Dataflow channels

A channel ties tasks together

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Conway’s Game of Life

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

bool cell_rules(std::vector<bool> const& incoming){

bool const was_alive=incoming[0];

unsigned const alive_neighbours=

std::count(incoming.begin()+1,incoming.end()-1,true);

return (was_alive && (alive_neighbours==2)) ||

(alive_neighbours==3);

}

void bind_cell_evolution_rules(){

for(unsigned x=0;x<width;++x){

for(unsigned y=0;y<height;++y){

std::vector<jss::dataflow::readable_channel<bool> > vec=

find_neighbours(x,y);

vec.push_back(heartbeat);

jss::dataflow::combine(vec).

transform(cell_rules).write_to(cells[x][y]);

}

}

}

Dataflow: Summary

Tasks Transforms,
generators, etc.

Communication Channels

State Task’s internal
state

Concurrency Items x tasks

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

High Level Approaches

Actors

Active Objects

Dataflow

Loop Parallelism

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Loop Parallelism

Declarative: do this for each of
these data items

Used in OpenMP, TBB, C++AMP

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Loop Parallelism (II)

Parallel versions of:

std::for each

std::find

std::count

std::transform

std::accumulate

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

OpenMP naive matrix multiplication

#pragma omp parallel for

for (i = 0; i < nrows; i++){

for(j = 0; j < ncols; j++){

for (k = 0; k < nrowcols; k++){

c[i][j] += a[i][k] * b[k][j];

}

}

}

This only parallelizes the outer loop

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

TBB naive matrix multiplication

parallel_for(

blocked_range<int>(0,nrows),

[&](blocked_range<int> r) {

for (int i=r.begin();i!=r.end();++i) {

parallel_for(

blocked_range<int>(0,ncols),

[&](blocked_range<int> r2) {

for(int j=r2.begin();j!=r2.end();++j){

for(int k=0;k<nrowcols;++k)

c[i][j] += a[i][k] * b[k][j];

}

});

}

});

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

C++AMP matrix multiplication

concurrency::array_view<const float,2> va(

nrows, nrowcols, a);

concurrency::array_view<const float,2> vb(

nrowcols, ncols, b);

concurrency::array_view<float,2> vc(

nrows, ncols, c); vc.discard_data();

concurrency::parallel_for_each(vc.extent,

[=](concurrency::index<2> idx) restrict(amp) {

int row = idx[0]; int col = idx[1];

float sum = 0.0f;

for(int i = 0; i < W; i++)

sum += va(row, i) * vb(i, col);

vc[idx] = sum;

});

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Loop Parallelism: Summary

Tasks Core loop function

Communication Shared data

State Shared data

Concurrency Limited to number
of data items

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.justsoftwaresolutions.co.uk

Just::Thread

just::thread provides a complete implementation of the C++11
thread library for MSVC and g++ on Windows, and g++ for
Linux and MacOSX.

Just::Thread Pro also coming soon, with support for many of
the high level facilities shown in this presentation. Find out more
at:
http://www.stdthread.co.uk/pro

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://www.stdthread.co.uk/pro
http://www.justsoftwaresolutions.co.uk

My Book

C++ Concurrency in Action:
Practical Multithreading with the
new C++ Standard.

http://stdthread.com/book

Anthony Williams Just Software Solutions Ltd http://www.justsoftwaresolutions.co.uk

Dataflow, actors and high level structures in concurrent applications

http://stdthread.com/book
http://www.justsoftwaresolutions.co.uk

