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The Continuing Future of C++ Concurrency

o C++14
e Technical Specifications prior to C++17:

e Concurrency
e Parallelism
e Transactional Memory
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Concurrency in C++14



New in C++14

Only one new concurrency feature:
@ std: :shared_timed mutex
@ std: :shared_ lock<>
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C++14: std: :shared timed mutex

Multiple threads may hold a shared lock

OR

One thread may hold an exclusive lock
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Shared look-up table: reading

std: :map<std::string,std::string> table;
std: :mutex m;

std::string find_entry(std::string s) {
std::lock_guard<std::mutex> guard (m) ;
auto it=table.find(s);
if (it==table.end())
throw std::runtime_error ("Not found");
return it->second;

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency


http://www.justsoftwaresolutions.co.uk

Shared look-up table: updating

std: :map<std::string,std::string> table;
std: :mutex m;

void add_entry (
std::string key,std::string value) {
std::lock_guard<std::mutex> guard(m);
table.insert (std: :make_pair (key,value));
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std: :shared timed mutex: shared locks

std: :map<std::string,std::string> table;
std: :shared timed mutex m;
std::string find_entry(std::string s) {
std: :shared_lock<
std: :shared_timed mutex> guard (m);
auto it=table.find(s);
if (it==table.end())
throw std::runtime_error ("Not found");
return it->second;
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std: :shared timed mutex: exclusive locks

std: :map<std::string,std::string> table;
std: :shared timed mutex m;

void add_entry (
std::string key,std::string value) {
std::lock_guard<
std: :shared_timed_mutex> guard(m);
table.insert (std: :make_pair (key,value));
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std: :shared timed mutex: condition variables

std::shared_timed_mutex mut;
std::condition_variable_any cv;

bool ready_to_proceed();

void get_data () {
std: :shared_lock<
std::shared_timed _mutex> sl (mut) ;
cv.wait (sl, ready_to_proceed);
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The timed part of std: : shared_timed_mutex

std::shared_timed_mutex m;
void foo () {
std: :shared_lock<
std::shared_timed_mutex> sl (
m, std: :chrono::seconds (1)) ;
if(!sl.owns_lock())
return;
do_foo();
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std: :shared timed mutex: more timeouts

std: :shared_lock<
std: :shared_timed _mutex> sl (
m,
std::chrono::steady_clock: :now()+
std::chrono::milliseconds (100));

std: :unique_lock<
std: :shared_timed _mutex> ul (
m, std::chrono::milliseconds (100));
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std::shared _timed_ mutex performance

e Not always an optimization:
profile, profile, profile

e The std: :shared_timed _mutex itself is
a point of contention
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C++14: std: :async unchanged

Futures returned from std: : async still block in
their destructor if not deferred.
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C++14: std: :async unchanged

This code is still safe:

#include <future>
#include <iostream>
void write_message (
std::string const& message) {
std: :cout<<message;
}
int main() {
std::string s="hello world\n";
auto f=std::async([&s]{write_message(s);});
// oops no wait
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Technical Specification for C++
Extensions for Concurrency



Concurrency TS: Accepted Proposals

Only two accepted proposals:
e Executors and Schedulers
e Continuations for std: : future
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Concurrency TS: Proposals Under Consideration

e Latches and Barriers

e Task groups and regions

e Distributed Counters

e Concurrent Unordered Containers

e Concurrent Queues

e Safe concurrent stream access

e Resumable functions and coroutines
e Pipelines
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Executors and Schedulers

e An executor schedules tasks for execution
e executor is an abstract base class

e Derived executors have different scheduling
properties
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Executors

Scheduling a task is done with the virtual
member function add:

void add(std: :function<void() >)
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Using executors

void schedule_tasks (
executoré& ex) {
ex.add (taskl);
ex.add (task?2);
ex.add([]{ do_something();1});
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Supplied executors

The TS includes several executor classes:

e inline executor — add runs the task
before it returns

e thread_pool — runs the tasks on a fixed
number of threads

@ serial executor — ensures tasks are
run in FIFO order on another executor

e loop_executor — queues tasks until a
“run tasks” function is called manually
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loop_executor

loop_executor has three member functions for
running tasks:

e try_run_one_closure () — run a task if there is
one queued

e run_queued_closures () — run all tasks currently
queued

e loop () — run tasks until told to stop

The make_loop_exit () member function interrupts
loop () and run_queued_closures () between tasks
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loop_executor

loop_executor ex;

void thread_1 () {
ex.add (taskAh) ;
ex.add (taskB) ;
ex.add([] {ex.make_loop_exit ();});

void thread 2 () {
ex.loop();
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The scheduled executor interface

The scheduled_executor is derived from
executor, and adds two new functions to the
executor interface:
e add_at (system_time, func) —
schedule the task as soon after
system_time as possible

@ add_after (delay, func) — add_at (
system_clock::now()+delay, func)
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The thread_pool executor

e The thread_pool executor is the only example of a
scheduled_executor inthe TS.
e It provides a fixed-size thread pool.
thread_pool ex(
std::thread: :hardware_concurrency()) ;

e Dependencies between tasks will potentially deadlock
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Executors and std: :async

There is a new overload of std: :async:

template<class F, class... Args>
future<typename result_of<
typename decay<kF>::type (
typename decay<Args>::type...)
>:itype>
async (executor &ex,
F&& £, Argsé&é&... args);
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Executors and std: :async

Key differences from normal std: :async:

e The task is scheduled with ex.add () rather
than on its own thread

e The resultant future does not wait in its
destructor
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Executors and std: :async

This code is NOT safe:

void write_message (
std::string const& message) {
std: :cout<<message;
}
void foo (executor& ex) {
std::string s="hello world\n";
auto f=std::async(ex, [&s] {write_message(s);});
// oops no wait
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Continuations and std: : future

e A continuation is a new task to run when a
future becomes ready

e Continuations are added with the new then
member function

e Continuation functions must take a
std: : future as the only parameter

e The source future is no longer valid()
e Only one continuation can be added
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Continuations and std: : future

int find_the_answer () ;

std::string process_result (
std::future<int>);

auto f=std::async(find_the_answer);

auto f2=f.then(process_result);

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency


http://www.justsoftwaresolutions.co.uk

Exceptions and continuations

int fail () {
throw std::runtime_error ("failed");
}
void next (std::future<int> f) {
f.get();
}
void foo () {
auto f=std::async(fail) .then (next);
f.get();
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Using lambdas to wrap plain functions

int find_the_answer();
std::string process_result (int);

auto f=std::async(find_the_answer);
auto f2=f.then([] (std::future<int> £f) {
return process_result(f.get());1});
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Continuations and std: : shared future

e Continuations work with
std: :shared_ future as well

e The continuation function must take a
std: :shared_future

e The source future remains valid ()
e Multiple continuations can be added
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std: :shared future continuations

int find_the_answer();
void nextl (std::shared_future<int>);
unsigned next2 (std::shared_future<int>)

auto fi=std::async(find_the_answer).
share () ;

fi.then (nextl);

fi.then (next?2);
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Scheduling continuations

By default, the continuation inherits the
scheduling properties of the parent future:
e std: :promise Ofr std: :packaged_task
=> std::async (continuation)

e std:
std:
e std:
std:
e std:
std:

Anthony Williams

:async (func) =>
:async (continuation)

:async (policy, func) =>

(
(
:async (policy, continuation)
:async (executor, func) =>

(

:async (executor,continuation)
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Custom scheduling for continuations

You can specify the scheduling manually:
vold continuations(
std::future<int> f,executor& ex) {
auto f2=f.then
std::launch: :deferred, foo);
auto f£3=f2.then(
std::launch: :async, bar);
auto f4=f3.then(ex,baz);
f4d.wait ();
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Waiting for the first future to be ready

when_any waits for the first future in the
supplied set to be ready. It has two overloads:

template<typename ... Futures>
std::future<std::tuple<Futures...> >
when_any (Futures... futures);

template<typename Iterator>
std::future<std::vector<
std::iterator_traits<Iterator>::
value_type> >
when_any (Iterator begin, Iterator end);
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when_any

when_any is ideal for:
e Waiting for speculative tasks

e Waiting for first results before doing further
processing

auto fl=std::async(foo);
auto f2=std::async (bar);
auto f3=when_any (
std: :move (fl), std: :move (£2));
f3.then (baz) ;
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Waiting for all futures to be ready

when_all waits for all futures in the supplied
set to be ready. It has two overloads:

template<typename ... Futures>
std::future<std::tuple<Futures...> >
when_all (Futures... futures);

template<typename Iterator>
std::future<std::vector<
std::iterator_traits<Iterator>::
value_type> >
when_all (Iterator begin, Iterator end);
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when_all

when_all is ideal for waiting for all subtasks
before continuing. Better than calling wait ()
on each in turn:

auto
auto
auto
auto

fl=std::async (subtaskl);
f2=std::async (subtask?2);
f3=std::async (subtask3);
results=when_all (

std: :move (fl), std: :move (£2),
std: :move (£3)) .get () ;
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Small improvements

The TS also has a couple of small improvements to the
std: : future interface:

e make_ready_future () — creates a
std: : future thatis ready, holding the supplied
value

e ready () member function — returns whether or not
the future is ready

e unwrap () member function — converts a
std::future<std::future<T> >intoa
std::future<T>
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Concurrency TS:
Proposals Under Consideration



Latches and Barriers

e A Latch is a single-use count-down
synchronization mechanism: once Count
threads have decremented the latch it is
permanently signalled.

e A Barrier is a reusable count-down
synchronization mechanism: once Count
threads have decremented the barrier, it is
reset.
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Task groups and regions

Task groups or regions allow for managing
hierarchies of tasks:
e Tasks within a task region can run in parallel

e All tasks created within a task region are
complete when the region exits

e Task regions can be nested
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Distributed Counters

Distributed counters improve performance by
reducing contention on a global counter.

e Counts can be buffered locally to a function
or a thread

e Updates of the global count can be via push
from each thread or pull from the reader
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Concurrent Unordered Containers

The current proposal is for a
concurrent_unordered_value_map.

e No references can be obtained to the stored
elements

e Many functions return
optional<mapped_type>

e As well as simple queries like £ind there
are also member functions reduce and
for_each
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Concurrent Queues

A concurrent queue is a vital means of
inter-thread communication.

e Queues may or may not be lock-free
e May be fixed-size of unlimited

e May be closed to prevent additional
elements being pushed

e You can obtain a “push handle” or “pop
handle” for writing or reading

e Input and output iterators are supported
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Safe concurrent stream access

The standard streams provide limited thread
safety — output may be interleaved
void thread 1 () {
std: :cout<<10<<20<<30;
}
void thread_2 () {
std: :cout<<40<<50<<60;

}
output may be
104050206030

Anthony Williams Just Software Solutions Ltd http: //www

The Continuing Future of C++ Concurrency


http://www.justsoftwaresolutions.co.uk

Safe concurrent stream access

We need a way to group output from several
inserts: basic_ostream buffer<char>

void thread_1 () {
basic_ostream _buffer<char> buf (
std: :cout);
buf<<10<<20<<30;
} // buf destroyed
// contents written to std::cout
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Resumable functions and coroutines

Coroutines expose a “pull” interface for
callback-style implementations.

Resumable functions automatically generate
async calls from code that waits on futures.

Both provide alternative ways of structuring
code that does asynchronous operations.
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Pipelines

The pipeline proposal is a way of wrapping
concurrent queues and tasks:

queue<InputType> source;
queue<OutputType> sink;
pipeline::from(source) |
pipeline: :parallel (foo,num_threads) |
bar | baz | sink;
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Further proposals

There are more proposals not covered here.
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Technical Specification for C++
Extensions for Parallelism



Parallelism TS

Already accepted:
o Parallel algorithms

Still under discussion:
e Mapreduce
e Lightweight Execution Agents
e SIMD and Vector algorithms
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Parallel Algorithms

This TS provides a new set of overloads of the
standard library algorithms with an execution
policy parameter:

template<typename ExecutionPolicy,
typename Iterator,
typename Function>

void for_each (
ExecutionPolicyé&é& policy,
Iterator begin, Iterator end,
Function f);
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Execution Policies

The execution policy may be:
e parallel::seq — sequential execution on the
calling thread

o parallel::par — indeterminately sequenced
execution on unspecified threads

e parallel::vec — unsequenced execution on
unspecified threads
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execution_policy objects

execution_policy objects may be used to
pass the desired sequencing as a parameter:

void outer (execution_policy policy) {
sort (policy,data.begin(),data.end());
}
void foo () {
outer (parallel::par);
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Supported algorithms

The vast majority of the C++ standard algorithms are
parallelized:

adjacent_findall_of any_of copy_1if copy_n copy count_1if count equal
exclusive_scan fill n fill find_end find_first_of find_1if not find_if
find for_each_n for_each generate_n generate includes inclusive_scan
inplace_merge is_heap is_partitioned is_sorted_until is_sorted
lexicographical_compare max_element merge min_element minmax_element
mismatch move none_of nth_element partial_sort_copy partial_sort
partition_copy partition reduce remove_copy_1if remove_copy remove_if
remove replace_copy_1if replace_copy replace reverse_copy reverse
rotate_copy rotate search_n search set_difference set_intersection
set_symmetric_difference set_union sort stable_partition stable_sort
swap_ranges transformuninitialized_copy_nuninitialized_copy
uninitialized_fill_nuninitialized_fill unique_copy unique

ony Williams Just Software Solutions Ltd htt

The Continuing Future of C++ Concurrency


http://www.justsoftwaresolutions.co.uk

Parallelism TS:
Proposals Under Consideration



Parallelism TS: Proposals Under Consideration

e Map-reduce:
A policy-based framework from transforming
a set of input values and combining the
results

e Vector and SIMD computation:
Better support for vector computations than
parallel: :vec

e Lightweight Execution Agents:
How do SIMD and GPGPU tasks map to
thread-local storage and thread IDs?
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Transactional Memory for C++



Transactional Memory

Two basic types of “transaction” blocks:
synchronized blocks and atomic blocks

e Synchronized blocks introduced with the
synchronized keyword

e Atomic blocks introduced with one of
atomic_noexcept, atomic_commit Or
atomic_cancel
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Synchronized blocks

Synchronized blocks behave as if they lock a
global mutex.
int 1i;
void foo () {
synchronized {
++1;
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Atomic blocks

Atomic execute atomically and not concurrently
with any synchronized blocks.
int 1i;
void bar () {
atomic_noexcept {
++1;
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Atomic blocks may be concurrent

Atomic may execute concurrently if no conflicts
int 1i,73;
void bar () {

atomic_noexcept { ++i; }

}
void baz () {

atomic_noexcept { ++73; }
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Atomic blocks and exceptions

The atomic blocks differ in their behaviour with
exceptions:
e atomic_noexcept — escaping exceptions
cause undefined behaviour
e atomic_commit — escaping exceptions
commit the transaction
e atomic_cancel — escaping exceptions
roll back the transaction, but must be
transaction safe
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Questions?



Just::Thread

just: :thread Ckmo
Complete C++ Standard 'I‘hrea(hl.tbraty OO o OO

just: :thread provides a complete implementation of the
C++11 thread library for MSVC and g++ on Windows, and g++
for Linux and MacOSX. C++14 support currently in testing.
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C++ Concurrency in Action:
Practical Multithreading

http://stdthread.com/book
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