The Continuing Future of C++ Concurrency

Anthony Williams

Just Software Solutions Ltd
http://www. justsoftwaresolutions.co.uk

12th April 2014

http://www.justsoftwaresolutions.co.uk

The Continuing Future of C++ Concurrency

o C++14
e Technical Specifications prior to C++17:

e Concurrency
e Parallelism
e Transactional Memory

Anthony Williams Just Software Solutions Ltd http

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Concurrency in C++14

New in C++14

Only one new concurrency feature:
@ std: :shared_timed mutex
@ std: :shared_ lock<>

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

C++14: std: :shared timed mutex

Multiple threads may hold a shared lock

OR

One thread may hold an exclusive lock

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Shared look-up table: reading

std: :map<std::string,std::string> table;
std: :mutex m;

std::string find_entry(std::string s) {
std::lock_guard<std::mutex> guard (m) ;
auto it=table.find(s);
if (it==table.end())
throw std::runtime_error ("Not found");
return it->second;

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Shared look-up table: updating

std: :map<std::string,std::string> table;
std: :mutex m;

void add_entry (
std::string key,std::string value) {
std::lock_guard<std::mutex> guard(m);
table.insert (std: :make_pair (key,value));

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

std: :shared timed mutex: shared locks

std: :map<std::string,std::string> table;
std: :shared timed mutex m;
std::string find_entry(std::string s) {
std: :shared_lock<
std: :shared_timed mutex> guard (m);
auto it=table.find(s);
if (it==table.end())
throw std::runtime_error ("Not found");
return it->second;

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

std: :shared timed mutex: exclusive locks

std: :map<std::string,std::string> table;
std: :shared timed mutex m;

void add_entry (
std::string key,std::string value) {
std::lock_guard<
std: :shared_timed_mutex> guard(m);
table.insert (std: :make_pair (key,value));

Anthony Williams Just Software Solutions Ltd http

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

std: :shared timed mutex: condition variables

std::shared_timed_mutex mut;
std::condition_variable_any cv;

bool ready_to_proceed();

void get_data () {
std: :shared_lock<
std::shared_timed _mutex> sl (mut) ;
cv.wait (sl, ready_to_proceed);

Anthony Williams Just Software Solutions Ltd http

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

The timed part of std: : shared_timed_mutex

std::shared_timed_mutex m;
void foo () {
std: :shared_lock<
std::shared_timed_mutex> sl (
m, std: :chrono::seconds (1)) ;
if(!sl.owns_lock())
return;
do_foo();

Anthony Williams Just Software Solutions Ltd http

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

std: :shared timed mutex: more timeouts

std: :shared_lock<
std: :shared_timed _mutex> sl (
m,
std::chrono::steady_clock: :now()+
std::chrono::milliseconds (100));

std: :unique_lock<
std: :shared_timed _mutex> ul (
m, std::chrono::milliseconds (100));

Anthony Williams Just Software Solutions Ltd http

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

std::shared _timed_ mutex performance

e Not always an optimization:
profile, profile, profile

e The std: :shared_timed _mutex itself is
a point of contention

Anthony Williams Just Software Solutions Ltd http

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

C++14: std: :async unchanged

Futures returned from std: : async still block in
their destructor if not deferred.

Anthony Williams Just Software Solutions Ltd http

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

C++14: std: :async unchanged

This code is still safe:

#include <future>
#include <iostream>
void write_message (
std::string const& message) {
std: :cout<<message;
}
int main() {
std::string s="hello world\n";
auto f=std::async([&s]{write_message(s);});
// oops no wait

Anthony Williams Just Software Solutions Ltd http

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Technical Specification for C++
Extensions for Concurrency

Concurrency TS: Accepted Proposals

Only two accepted proposals:
e Executors and Schedulers
e Continuations for std: : future

Anthony Williams Just Software Solutions Ltd http

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Concurrency TS: Proposals Under Consideration

e Latches and Barriers

e Task groups and regions

e Distributed Counters

e Concurrent Unordered Containers

e Concurrent Queues

e Safe concurrent stream access

e Resumable functions and coroutines
e Pipelines

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Executors and Schedulers

e An executor schedules tasks for execution
e executor is an abstract base class

e Derived executors have different scheduling
properties

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Executors

Scheduling a task is done with the virtual
member function add:

void add(std: :function<void() >)

Anthony Williams Just Software Solutions Ltd http:

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Using executors

void schedule_tasks (
executoré& ex) {
ex.add (taskl);
ex.add (task?2);
ex.add([]{ do_something();1});

Anthony Williams Just Software Solutions Ltd http:

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Supplied executors

The TS includes several executor classes:

e inline executor — add runs the task
before it returns

e thread_pool — runs the tasks on a fixed
number of threads

@ serial executor — ensures tasks are
run in FIFO order on another executor

e loop_executor — queues tasks until a
“run tasks” function is called manually

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

loop_executor

loop_executor has three member functions for
running tasks:

e try_run_one_closure () — run a task if there is
one queued

e run_queued_closures () — run all tasks currently
queued

e loop () — run tasks until told to stop

The make_loop_exit () member function interrupts
loop () and run_queued_closures () between tasks

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

loop_executor

loop_executor ex;

void thread_1 () {
ex.add (taskAh) ;
ex.add (taskB) ;
ex.add([] {ex.make_loop_exit ();});

void thread 2 () {
ex.loop();

Anthony Williams Just Software Solutions Ltd http

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

The scheduled executor interface

The scheduled_executor is derived from
executor, and adds two new functions to the
executor interface:
e add_at (system_time, func) —
schedule the task as soon after
system_time as possible

@ add_after (delay, func) — add_at (
system_clock::now()+delay, func)

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

The thread_pool executor

e The thread_pool executor is the only example of a
scheduled_executor inthe TS.
e It provides a fixed-size thread pool.
thread_pool ex(
std::thread: :hardware_concurrency()) ;

e Dependencies between tasks will potentially deadlock

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Executors and std: :async

There is a new overload of std: :async:

template<class F, class... Args>
future<typename result_of<
typename decay<kF>::type (
typename decay<Args>::type...)
>:itype>
async (executor &ex,
F&& £, Argsé&é&... args);

Anthony Williams Just Software Solutions Ltd http

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Executors and std: :async

Key differences from normal std: :async:

e The task is scheduled with ex.add () rather
than on its own thread

e The resultant future does not wait in its
destructor

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Executors and std: :async

This code is NOT safe:

void write_message (
std::string const& message) {
std: :cout<<message;
}
void foo (executor& ex) {
std::string s="hello world\n";
auto f=std::async(ex, [&s] {write_message(s);});
// oops no wait

Anthony Williams Just Software Solutions Ltd http

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Continuations and std: : future

e A continuation is a new task to run when a
future becomes ready

e Continuations are added with the new then
member function

e Continuation functions must take a
std: : future as the only parameter

e The source future is no longer valid()
e Only one continuation can be added

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Continuations and std: : future

int find_the_answer () ;

std::string process_result (
std::future<int>);

auto f=std::async(find_the_answer);

auto f2=f.then(process_result);

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Exceptions and continuations

int fail () {
throw std::runtime_error ("failed");
}
void next (std::future<int> f) {
f.get();
}
void foo () {
auto f=std::async(fail) .then (next);
f.get();

Anthony Williams Just Software Solutions Ltd http

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Using lambdas to wrap plain functions

int find_the_answer();
std::string process_result (int);

auto f=std::async(find_the_answer);
auto f2=f.then([] (std::future<int> £f) {
return process_result(f.get());1});

Anthony Williams Just Software Solutions Ltd http

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Continuations and std: : shared future

e Continuations work with
std: :shared_ future as well

e The continuation function must take a
std: :shared_future

e The source future remains valid ()
e Multiple continuations can be added

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

std: :shared future continuations

int find_the_answer();
void nextl (std::shared_future<int>);
unsigned next2 (std::shared_future<int>)

auto fi=std::async(find_the_answer).
share () ;

fi.then (nextl);

fi.then (next?2);

Anthony Williams Just Software Solutions Ltd http

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Scheduling continuations

By default, the continuation inherits the
scheduling properties of the parent future:
e std: :promise Ofr std: :packaged_task
=> std::async (continuation)

e std:
std:
e std:
std:
e std:
std:

Anthony Williams

:async (func) =>
:async (continuation)

:async (policy, func) =>

(
(
:async (policy, continuation)
:async (executor, func) =>

(

:async (executor,continuation)

Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Custom scheduling for continuations

You can specify the scheduling manually:
vold continuations(
std::future<int> f,executor& ex) {
auto f2=f.then
std::launch: :deferred, foo);
auto f£3=f2.then(
std::launch: :async, bar);
auto f4=f3.then(ex,baz);
f4d.wait ();

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Waiting for the first future to be ready

when_any waits for the first future in the
supplied set to be ready. It has two overloads:

template<typename ... Futures>
std::future<std::tuple<Futures...> >
when_any (Futures... futures);

template<typename Iterator>
std::future<std::vector<
std::iterator_traits<Iterator>::
value_type> >
when_any (Iterator begin, Iterator end);

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

when_any

when_any is ideal for:
e Waiting for speculative tasks

e Waiting for first results before doing further
processing

auto fl=std::async(foo);
auto f2=std::async (bar);
auto f3=when_any (
std: :move (fl), std: :move (£2));
f3.then (baz) ;

Anthony Williams Just Software Solutions Ltd http://

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Waiting for all futures to be ready

when_all waits for all futures in the supplied
set to be ready. It has two overloads:

template<typename ... Futures>
std::future<std::tuple<Futures...> >
when_all (Futures... futures);

template<typename Iterator>
std::future<std::vector<
std::iterator_traits<Iterator>::
value_type> >
when_all (Iterator begin, Iterator end);

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

when_all

when_all is ideal for waiting for all subtasks
before continuing. Better than calling wait ()
on each in turn:

auto
auto
auto
auto

fl=std::async (subtaskl);
f2=std::async (subtask?2);
f3=std::async (subtask3);
results=when_all (

std: :move (fl), std: :move (£2),
std: :move (£3)) .get () ;

Anthony Williams

Just Software Solutions Ltd http://

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Small improvements

The TS also has a couple of small improvements to the
std: : future interface:

e make_ready_future () — creates a
std: : future thatis ready, holding the supplied
value

e ready () member function — returns whether or not
the future is ready

e unwrap () member function — converts a
std::future<std::future<T> >intoa
std::future<T>

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Concurrency TS:
Proposals Under Consideration

Latches and Barriers

e A Latch is a single-use count-down
synchronization mechanism: once Count
threads have decremented the latch it is
permanently signalled.

e A Barrier is a reusable count-down
synchronization mechanism: once Count
threads have decremented the barrier, it is
reset.

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Task groups and regions

Task groups or regions allow for managing
hierarchies of tasks:
e Tasks within a task region can run in parallel

e All tasks created within a task region are
complete when the region exits

e Task regions can be nested

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Distributed Counters

Distributed counters improve performance by
reducing contention on a global counter.

e Counts can be buffered locally to a function
or a thread

e Updates of the global count can be via push
from each thread or pull from the reader

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Concurrent Unordered Containers

The current proposal is for a
concurrent_unordered_value_map.

e No references can be obtained to the stored
elements

e Many functions return
optional<mapped_type>

e As well as simple queries like £ind there
are also member functions reduce and
for_each

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Concurrent Queues

A concurrent queue is a vital means of
inter-thread communication.

e Queues may or may not be lock-free
e May be fixed-size of unlimited

e May be closed to prevent additional
elements being pushed

e You can obtain a “push handle” or “pop
handle” for writing or reading

e Input and output iterators are supported

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Safe concurrent stream access

The standard streams provide limited thread
safety — output may be interleaved
void thread 1 () {
std: :cout<<10<<20<<30;
}
void thread_2 () {
std: :cout<<40<<50<<60;

}
output may be
104050206030

Anthony Williams Just Software Solutions Ltd http: //www

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Safe concurrent stream access

We need a way to group output from several
inserts: basic_ostream buffer<char>

void thread_1 () {
basic_ostream _buffer<char> buf (
std: :cout);
buf<<10<<20<<30;
} // buf destroyed
// contents written to std::cout

Anthony Williams Just Software Solutions Ltd http

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Resumable functions and coroutines

Coroutines expose a “pull” interface for
callback-style implementations.

Resumable functions automatically generate
async calls from code that waits on futures.

Both provide alternative ways of structuring
code that does asynchronous operations.

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Pipelines

The pipeline proposal is a way of wrapping
concurrent queues and tasks:

queue<InputType> source;
queue<OutputType> sink;
pipeline::from(source) |
pipeline: :parallel (foo,num_threads) |
bar | baz | sink;

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Further proposals

There are more proposals not covered here.

Anthony Williams Just Software Solutions Ltd http:

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Technical Specification for C++
Extensions for Parallelism

Parallelism TS

Already accepted:
o Parallel algorithms

Still under discussion:
e Mapreduce
e Lightweight Execution Agents
e SIMD and Vector algorithms

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Parallel Algorithms

This TS provides a new set of overloads of the
standard library algorithms with an execution
policy parameter:

template<typename ExecutionPolicy,
typename Iterator,
typename Function>

void for_each (
ExecutionPolicyé&é& policy,
Iterator begin, Iterator end,
Function f);

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Execution Policies

The execution policy may be:
e parallel::seq — sequential execution on the
calling thread

o parallel::par — indeterminately sequenced
execution on unspecified threads

e parallel::vec — unsequenced execution on
unspecified threads

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

execution_policy objects

execution_policy objects may be used to
pass the desired sequencing as a parameter:

void outer (execution_policy policy) {
sort (policy,data.begin(),data.end());
}
void foo () {
outer (parallel::par);

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Supported algorithms

The vast majority of the C++ standard algorithms are
parallelized:

adjacent_findall_of any_of copy_1if copy_n copy count_1if count equal
exclusive_scan fill n fill find_end find_first_of find_1if not find_if
find for_each_n for_each generate_n generate includes inclusive_scan
inplace_merge is_heap is_partitioned is_sorted_until is_sorted
lexicographical_compare max_element merge min_element minmax_element
mismatch move none_of nth_element partial_sort_copy partial_sort
partition_copy partition reduce remove_copy_1if remove_copy remove_if
remove replace_copy_1if replace_copy replace reverse_copy reverse
rotate_copy rotate search_n search set_difference set_intersection
set_symmetric_difference set_union sort stable_partition stable_sort
swap_ranges transformuninitialized_copy_nuninitialized_copy
uninitialized_fill_nuninitialized_fill unique_copy unique

ony Williams Just Software Solutions Ltd htt

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Parallelism TS:
Proposals Under Consideration

Parallelism TS: Proposals Under Consideration

e Map-reduce:
A policy-based framework from transforming
a set of input values and combining the
results

e Vector and SIMD computation:
Better support for vector computations than
parallel: :vec

e Lightweight Execution Agents:
How do SIMD and GPGPU tasks map to
thread-local storage and thread IDs?

Anthony Williams Just Software Solutions Ltd http://www. justsoftwaresolutions.co.uk

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Transactional Memory for C++

Transactional Memory

Two basic types of “transaction” blocks:
synchronized blocks and atomic blocks

e Synchronized blocks introduced with the
synchronized keyword

e Atomic blocks introduced with one of
atomic_noexcept, atomic_commit Or
atomic_cancel

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Synchronized blocks

Synchronized blocks behave as if they lock a
global mutex.
int 1i;
void foo () {
synchronized {
++1;

Anthony Williams Just Software Solutions Ltd http:

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Atomic blocks

Atomic execute atomically and not concurrently
with any synchronized blocks.
int 1i;
void bar () {
atomic_noexcept {
++1;

Anthony Williams Just Software Solutions Ltd http:

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Atomic blocks may be concurrent

Atomic may execute concurrently if no conflicts
int 1i,73;
void bar () {

atomic_noexcept { ++i; }

}
void baz () {

atomic_noexcept { ++73; }

Anthony Williams Just Software Solutions Ltd http:

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Atomic blocks and exceptions

The atomic blocks differ in their behaviour with
exceptions:
e atomic_noexcept — escaping exceptions
cause undefined behaviour
e atomic_commit — escaping exceptions
commit the transaction
e atomic_cancel — escaping exceptions
roll back the transaction, but must be
transaction safe

Anthony Williams Just Software Solutions Ltd http:/

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

Questions?

Just::Thread

just: :thread Ckmo
Complete C++ Standard 'I‘hrea(hl.tbraty OO o OO

just: :thread provides a complete implementation of the
C++11 thread library for MSVC and g++ on Windows, and g++
for Linux and MacOSX. C++14 support currently in testing.

Anthony Williams Just Software Solutions Ltd htt

The Continuing Future of C++ Concurrency

http://www.justsoftwaresolutions.co.uk

C++ Concurrency in Action:
Practical Multithreading

http://stdthread.com/book

Anthony Williams Just Software Solutions Ltd ht

The Continuing Future of C++ Concurrency

http://stdthread.com/book
http://www.justsoftwaresolutions.co.uk

