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Abstract

A core feature of functional programming is the ability to build new functions from old ones, such
as creating a new function h(x), such that h(x) ≡ f(g(x)), given functions f(x) and g(x). This paper
describes a way of providing such a facility in C++, that allows arbitrarily complex functions to be built
up in such a way.

This paper also shows a mechanism for automatic return type deduction, to avoid the need for the
result type typedefs traditionally found in functor classes.

Part I

Introduction

1 Function Composition

The purpose of function composition is to enable the building of complex functions from basic building
blocks at the point of use, as opposed to defining a separate function for the complex task. Consider using
std::transform to store double the value of each element in one container in another, as in listing 1 (avoid-
ing std::back inserter for simplicity) — we can use std::bind1st and std::multiplies to create a
new function object “multiply by 2”, which isn’t explicitly declared anywhere. However, if we now want to store
double the value plus one, then we can’t do it in one step anymore — we have to either explicitly define a “multi-
ply by 2 and add 1” function, or use std::transform twice, once to multiply by 2, and once to add 1 (listing
2). Function composition allows us to pull the operations back together into a single step, with an implicitly
declared function object (listing 3). For cases like this where the expression could be built using operators (did
it not have to be a functor) we can hide the use of compose using operator overloading, and write 2* 1+1
instead of compose(std::plus<double>(),compose(std::multiplies<double>(),2, 1),1)

void f(const std::vector<double>& src,std::vector<double>& dest)
{

dest.resize(src.size());
std::transform(src.begin(),src.end(),dest.begin(),

std::bind1st(std::multiplies<double>(),2));
}

Listing 1: Using std::transform to store double the values of a container

The compose function works very much like std::bind1st, in that it takes a function and some argument
values, and produces a new function object that accepts a different number of arguments. However, if one
of the arguments is itself a call to compose, then this second composed function is stored within the outer
composed function, and is called whenever the outer function is called, possibly with arguments that depend
on the supplied arguments to the outer function. Thus the functor generated by the compose invocation in
listing 3 is directly equivalent in behaviour to the functor class of listing 4.
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void f(const std::vector<double>& src,std::vector<double>& dest)
{

dest.resize(src.size());
std::transform(src.begin(),src.end(),dest.begin(),

std::bind1st(std::multiplies<double>(),2));
std::transform(dest.begin(),dest.end(),dest.begin(),

std::bind1st(std::plus<double>(),1));
}

double doubleAndAddOne(double i)
{

return 2.0*i+1.0;
}
void f2(const std::vector<double>& src,std::vector<double>& dest)
{

dest.resize(src.size());
std::transform(src.begin(),src.end(),dest.begin(),

doubleAndAddOne);
}

Listing 2: Storing 2x + 1 using std::transform twice, and with an explicit function.

void f(const std::vector<double>& src,std::vector<double>& dest)
{

dest.resize(src.size());
std::transform(src.begin(),src.end(),dest.begin(),

compose(std::plus<double>(),compose(std::multiplies<double>(),2,_1),1));
}

Listing 3: Storing 2x + 1 using compose.

This can be extended to any nesting level, and any number of function arguments; e.g. com-
pose(std::plus<double>(), compose(std::multiplies<double>(), 1, 1), com-
pose(std::multiplies<double>(), compose(std::multiplies<double>(), 1,2), 2))
gives x2 + 2xy where x ≡ 1 and y ≡ 2, and can be called as f(x,y) where f is the result of the call to
compose — the generated functor can then be used as an argument of the binary form of std::transform,
or any other algorithm that requires a binary functor.

Basically, when using compose to build a composed function, wherever there is a function call f(params)
replace it with a call to compose(f,params). If one of the function parameters is to be a parameter of the
composed function, replace it with one of 1, 2, 3, etc. to indicate where in the final parameter list it should
lie; if one of the parameters is a call to another function, the parameters of which are to be parameters of the
final composed function, again replace that with a call to compose. The result is a function object which,
when called, calls the composed functions in the appropriate order with the specified parameters.

struct __functor__
{

std::plus<double> Plus;
std::multiplies<double> Mult;

double operator()(double _1) const
{

return Plus(Mult(2,_1),1);
}

};

Listing 4: A functor equivalent to that generated by the compose call in listing 3
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For example, to create a composed function that takes 3 arguments — x, y and z — for the com-
plex expression f(g(x),h(x,y,i(z))), given the basic functions f, g, h, and i, we can use com-
pose(f,compose(g, 1),compose(h, 1, 2,compose(i, 3))).

2 Return Type Deduction

One thing to notice about the above uses of std::multiplies and std::plus is that they are templates,
and require the type of the arguments and return type to be specified. For overloaded functions such as
std::sin and std::cos, we have to cast them to a specific type in order to select which overload by
specifying the argument and return types. This clutters the code with explicit specification of types, which
can be deduced from the rest of the expression. Using the return-type deduction mechanism described later,
we can write classes with template members that perform the required operation, regardless of the types, as
in listing 5. For binary operators, such as addition, this can extend the applicability of the functor — the
Plus functor will handle pointer arithmetic as well as normal addition, something that std::plus cannot
support, as it requires both arguments to be the same type as the return type.

struct Plus
{

template<typename T,typename U>
deduced_return_type operator()(const T& t,const U& u) const
{

return t+u;
}

};

struct Sin
{

template<typename T>
deduced_return_type operator()(const T& t) const
{

return std::sin(t);
}

};

void write(double); // write out a value somewhere

std::for_each(vd.begin(),vd.end(),
compose(write,compose(Sin(),_1)));

std::for_each(vd.begin(),vd.end(),
compose(write,compose(Plus(),_1,2)));

Listing 5: Functor classes with template members

As well as simplifying compose expressions by avoiding the need for casts and explicit specification of template
parameters, such functors can also be used with operator overloading to write simple lambda functions in-line,
as described in section 10, when making a call to an algorithm that takes a functor parameter:

std::for_each(vd.begin(),vd.end(),
compose(write,_1+2*compose(Sin,_1*_1)));
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Part II

Implementation

3 Argument Sets

When writing a functor class to hold a composed function, there are two sets of arguments to consider —
one provided as part of the call to compose, and another given at the point where the composed function is
actually called. These must be combined to give the actual arguments used to call the underlying function.

To avoid a mountain of classes, template parameters, and member variables, these argument sets are stored as
instances of the ArgSetBase class template, or the ArgSet0 class for an empty argument set. ArgSetBase
is used as a recursive template, and works like a LISP list — the first template parameter is the type of the data
for the current node, and the second is either ArgSet0 to indicate the end of the list, or another instantiation
of ArgSetBase, to indicate further elements in the list. The class then contains a const instance of the data
type, and derives from the specified base type; it also provides typedefs Arg and Base for these types. See
listing 6 for the implementation. To ease construction of such argument sets by the user, the class templates
ArgSet1 . . .ArgSet10 are provided (listing 7). These inherit from appropriate instances of ArgSetBase,
and consequently behave identically, as the typedefs and member variable are public. We can also provide
ArgSetBaseRef and ArgSetRefn templates, which hold references to their data, rather than containing it
directly.

struct ArgSet0
{};

template<typename Arg_,typename Base_>
struct ArgSetBase:

public Base_
{

typedef Arg_ Arg;
typedef Base_ Base;

const Arg arg;

ArgSetBase(const Arg& arg_,const Base& base_):
Base(base_),arg(arg_)

{}
};

Listing 6: Argument Sets

Given an argument set, we need a way of extracting the values and their types. For the first element, this is
easy — just use the member typedef Arg and the data member arg — but for subsequent elements it is
more tricky, as these members are hidden by those of the first element. Therefore, we use the GetASEntry
class template to extract these for us, as in listing 8. In order to get the n-th entry, we must get the n − 1-
th entry of the Base; we then specialize the class for the first entry, in order to terminate the recursive
expansion. From the users point of view, GetASEntry<SomeArgSet,n>::Type is the type of the n-th
entry of SomeArgSet, and GetASEntry<SomeArgSet,n>::getVal(as) returns a reference to the n-th
value of as (which must be of type SomeArgSet).

Another class template can be used to determine the number of arguments in an argument set. This is the
CountArgs template shown in listing 9; again, it is a recursive template, this time terminated by being
instantiated with ArgSet0, the empty argument set, which contains zero entries. The count is returned in
the member result, so CountArgs<SomeArgSet>::result is the number of arguments in the argument
set type SomeArgSet.
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template<typename Arg1>
struct ArgSet1:

public ArgSetBase<Arg1,ArgSet0>
{

ArgSet1(const Arg1& a1):
ArgSetBase<Arg1,ArgSet0>(a1,Base())

{}
};

template<typename Arg1,typename Arg2>
struct ArgSet2:

public ArgSetBase<Arg1,ArgSet1<Arg2> >
{

ArgSet2(const Arg1& a1,const Arg2& a2):
ArgSetBase<Arg1,ArgSet1<Arg2> >(a1,Base(a2))

{}
};

template<typename Arg1,typename Arg2,typename Arg3>
struct ArgSet3:

public ArgSetBase<Arg1,ArgSet2<Arg2,Arg3> >
{

ArgSet3(const Arg1& a1,const Arg2& a2,const Arg3& a3):
ArgSetBase<Arg1,ArgSet2<Arg2,Arg3> >(a1,Base(a2,a3))

{}
};

// ...

Listing 7: Class templates for easier creation of argument sets

4 Unbound Parameters

Argument sets can be used for binding sets of values, but when composing functions we also need to leave
some function parameters unbound, to be provided by the final caller. This is the purpose of the ParamType
class template (listing 10) — it is a place holder for use in an argument set to indicate that the corresponding
entry is to remain unbound. Not only that, but the template parameter can be used to indicate which of the
arguments provided by the final caller is to be bound — ParamType<1> would indicate the first parameter
from the final call, whereas ParamType<7> would indicate the seventh parameter. The objects 1, 2, etc.
are instances of the ParamType template with the specified number as the template parameter, to ease typing,
so 4 is equivalent to ParamType<4>().

Once we have argument sets containing such place holders, we need two things; we need to be able to de-
termine the minimum number of arguments required in the final call to satisfy these place holders, and we
need to be able to create a final bound argument set from an argument set with place holders, and the ar-
guments provided by the final call, where the place holders are substituted with their actual values. The
former is done through the use of the MinArgs and NumArgs class templates, as well as the CT::Max class
template; the latter through the use of the transformArgSet and transformArg function templates, and
the TransformArgSetHelper class template.

NumArgs<T>::result is 0 for normal types, and the index count i for place holder types ParamType<i>.
This is used so that MinArgs<SomeArgSet>::result is the minimum number of arguments in the final call
needed to match all the place holders — MinArgs<SomeArgSet>::result is defined to be the maximum
of NumArgs<SomeArgSet::Arg> and MinArgs<SomeArgSet>::Base, using CT::Max to provide the
compile-time max functionality. As for CountArgs, we specialize for ArgSet0 to terminate the recursive
template.

The function template transformArgSet defers to TransformArgSetHelper< ArgSet, Call-
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template<typename ArgSet,unsigned index>
struct GetASEntry
{

typedef typename GetASEntry<typename ArgSet::Base,index-1>::Type Type;
static const Type& getVal(const ArgSet& as)
{

return GetASEntry<typename ArgSet::Base,index-1>::getVal(as);
}

};

template<typename ArgSet>
struct GetASEntry<ArgSet,1>
{

typedef typename ArgSet::Arg Type;
static const Type& getVal(const ArgSet& as)
{

return as.arg;
}

};

Listing 8: The GetASEntry class template

template<typename ArgSet>
struct CountArgs
{

static const unsigned result=1+CountArgs<typename ArgSet::Base>::result;
};

template<>
struct CountArgs<ArgSet0>
{

static const unsigned result=0;
};

Listing 9: The CountArgs class template

ingArgSet >::doTransform(). This function calls transformArg to transform the current argument,
and then uses TransformArgSet< ArgSet::Base, CallingArgSet >::doTransform() to trans-
form the remainder of the arguments. The result is a new argument set in which all the place holders have
been replaced with the corresponding entry from the final calling argument set.

transformArg is a function template that takes two parameters — the argument to transform, and the final
calling argument set. By default it just returns the argument to transform, as this is appropriate for bound
parameters. However, it is also overloaded for the case where the argument to transform is an instance of the
ParamType template, in which case it returns the i-th entry from the final calling argument set (where i is
the index parameter of the ParamType instance).

transformArg is also where nested compose-d functions are handled — if the argument to transform is a
composed function, then rather than just returning the function, transformArg invokes the function with
the calling argument set and returns the result. The composed function then invokes transformArg for all
its bound and unbound parameters, as if it was called directly, thereby supporting nesting to any level.

template<unsigned index>
struct ParamType
{};

Listing 10: The ParamType class template
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5 Reference arguments

Reference arguments are handled by the byRef function templates and the RefHolder class template. They
can either be specified at compose time, or at call time, or both. When specified at compose time, they
can either be a reference to a real variable (e.g. byRef(someVariable)), or a reference to an unbound
parameter (e.g. byRef( 1)). References to unbound parameters will force the actual argument supplied at
call time to be an lvalue, and a reference to that object will be passed to the underlying function.

Reference arguments can also be explicitly specified at call time, again by using byRef, in which case a reference
to the argument of byRef will be passed to the underlying function. If the original compose specified a given
unbound argument was byRef, then repeating byRef at call time is OK, but unnecessary — this is achieved by
overloading byRef, so byRef(byRef(some expression)) is equivalent to byRef(some expression).

Marking reference arguments at compose time is important, as it enables the use of functions that require
reference parameters with algorithms such as std::for each which do not know about byRef. It also
enables the fixed parameters to be references.

Marking reference arguments at call time is also important, as it enables the caller to specify pass-by-reference
when they believe it to be optimal or appropriate. It also enables the use of the functor as the first argument
to compose, and the specification of reference arguments for this second composed functor.

Unbound parameters marked as byRef at compose time cannot bind directly to rvalues. However, tempo-
raries can be passed to functors accepting const references, by using byRef at the point of call, as shown in
listing 11.

template<typename Func>
void someAlgorithm(const Func& f,int x,int y)
{

// use byRef to get a const reference to the temporary
f(byRef(x+y));
// no need for byRef with an lvalue
f(x);

}

void someFuncTakingConstRefArg(const int&);

void someOtherFunc()
{

// pass a compose-d functor requiring a reference
// to some algorithm
someAlgorithm(compose(someFuncTakingRefArg,byRef(_1)),1,5);

}

Listing 11: Binding temporaries with byRef

6 Implementation of the function call operator

Implementing the function call operator, operator(), is a tricky business. Firstly, we don’t know in advance
how many arguments the bound function is designed to accept, so we must provide multiple overloads that
accept different numbers of arguments. Secondly, we wish some of the unbound parameters to be passed
as references, where specified in the argument set, without restricting the use of rvalues for the remaining
arguments. This requires that the signature of the function call operator function vary depending on the
argument set, and which, if any, of the arguments are to be references. To simplify things, we shall specify
that the task of the function call operator is merely to build an appropriate argument set for the supplied
arguments, and pass that to another function which will actually perform the call. This can then be achieved
by the functor class inheriting from an instance of the class template FunctionCallOperatorImpl which
defines all the appropriate overloads. The primary definition of the FunctionCallOperatorImpl template
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can assume that all parameters can be rvalues, and consequently only provide overloads of the function call
operator on that basis. The template can then be specialized for each of the possible combinations of lvalue
and rvalue arguments. For a functor to accept up to 10 arguments, this leads to an astounding 1023 distinct
specializations of the template, as well as the primary template! Fortunately, they can be automatically
generated by a simple program, as the building of argument sets is quite straight-forward.

The FunctionCallOperatorImpl class template takes two parameters. The first (FuncCaller) is the
type of a helper struct that can be used to determine the return type via the member class template Helper,
and what the type of the derived class implementing the call function is. The second (NCRefPosSet) is
a recursive list template indicating which function call arguments must be lvalues, and which can be rval-
ues, that determines which specialization of FunctionCallOperatorImpl to use. The functor class is
publicly derived from the appropriate instantiation of FunctionCallOperatorImpl, and must implement
the call function. The DerivedType member typedef of the struct passed as the first argument of
FunctionCallOperatorImpl must be a const reference to this derived class.

The general form of each overload of operator() is as shown in listing 12. This is from the specialization of
FunctionCallOperatorImpl where the first argument must be a reference, so the RefType class template
is used to ensure that arguments supplied as byRef are passed correctly. The key features are the use of the
Helper member template of the FuncCaller class template parameter to deduce the return type, and the
case of *this to the DerivedType member typedef of FuncCaller before invoking the call member
function. Also, ArgSetRef2 is used to avoid unnecessary copying of the supplied arguments when invoking
call.

template<typename A1,typename A2>
typename FuncCaller::template Helper<

ArgSetRef2<
typename RefType<A1>::Type,
A2

>
>::ReturnType

operator()(A1& a1,const A2& a2) const
{

typedef ArgSetRef2<
typename RefType<A1>::Type,
A2

> AS;
return static_cast<typename FuncCaller::DerivedType>(*this).call(AS(a1,a2));

}

Listing 12: The implementation of one overload of operator() from FunctionCallOperatorImpl

With all the appropriate overloads of operator() implemented to forward to our single template function
call, we now need to focus on how that is implemented — by delegating the task to yet another template;
in this case, the callFunc static member function of the CallerHelper class template.

This class template has 4 parameters; the functor type, the bound argument set type, the calling argument
set type, and the number of arguments in the bound argument set, which is automatically deduced by default,
using the CountArgs class template. It is then specialized for each number of arguments in the bound
argument set, to implement the actual call. Each specialization contains a single static member function
callFunc, which extracts the appropriate arguments from the argument sets and invokes the functor; the
specialization for 2 arguments is shown in listing 13. This template can then be specialized by the user for
specific functor types, if they need to be called in a non-standard way.

7 Implementing return type deduction

Given that we now have an implementation of operator() which calls our contained functor of type Func,
with an argument set of type ArgSet, we need to determine the return type. This is the job of the RTHelper
template (listing 14), which contains the typedef Type that is the deduced return type. The purpose of this
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template<typename Func,typename ArgSet,typename CAS>
struct CallerHelper<Func,ArgSet,CAS,2>
{

typedef typename TransformArgSetHelper<ArgSet,CAS>::Type TransformedArgSet;
typedef typename RTHelper<Func,TransformedArgSet>::Type Type;
static Type callFunc(const Func& func,const ArgSet& as,const CAS& cas)
{

return func(transformArg(GetASEntry<ArgSet,1>::getVal(as),cas),
transformArg(GetASEntry<ArgSet,2>::getVal(as),cas));

}
};

Listing 13: The CallerHelper specialization for 2 arguments

class template is to use all the information available from the functor class and the argument set with which
it is to be called. It can be specialized (as we shall see later) for particular types of functor, in order to use
information available from that functor that is not available in general. In the absence of a specialization, it
is the task of the primary template to make a reasonable attempt at deducing the return type.

In the primary template, we use the compile-time if facility CT::If to check whether or not the bound
function type provides a ResultHelper member template. If the member template is present, it is used
to determine the result type, through the ExtractResultFromHelper class template; otherwise we check
for the existence of a result type member typedef. The ExtractResultType class template provides
access to this typedef. If neither the ResultHelper template or the result type typedef are present,
then the return type is deduced more directly, using the DeduceReturnType class template. The HasRe-
sultType class template is written so that result is true for functors derived from the standard library
base class templates — std::unary function and std::binary function — and false for all others.
It can then be specialized for other functors by the user. The ResultHelper member template is an entirely
new idea, so HasResultHelper::result defaults to false for all types, and is only true if the user
specializes it.

template<typename Func,typename ArgSet>
struct RTHelper
{

typedef typename CT::If<HasResultHelper<Func>::result,
ExtractResultFromHelper<Func,ArgSet>,
typename CT::If<HasResultType<Func>::result,

ExtractResultType<Func>,
DeduceReturnType<Func,ArgSet>
>::Type

>::Type::Type Type;
};

Listing 14: The RTHelper primary template

If present, the ResultHelper member template should accept any combination of arguments supported by
the functor (including no arguments) through use of default parameters where there are different numbers of
valid arguments, and each valid instantation should contain a member typedef Type for the result type.

The RTHelper class template is then partially specialized for pointers-to-functions taking various numbers of
arguments, making the return type directly available (listing 15). It is also partially specialized for functors
which are themselves the result of function composition using this library, in order to use the return type of
the underlying function of this nested composite, rather than doubling up on the return type deduction.

For those functor classes for which the return type is not available through a result type typedef or
through the use of a ResultHelper template, the class template DeduceReturnType is used to obtain the
return type. This class is specialized for the various numbers of arguments in the ArgSet parameter, through
the use of the third template parameter, which defaults to counting the number of arguments in the argset
using the CountArgs class template.
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template<typename RT,typename ArgSet>
struct RTHelper<RT(*)(),ArgSet>
{

typedef RT Type;
};

template<typename RT,
typename A1,
typename ArgSet>

struct RTHelper<RT(*)(A1),ArgSet>
{

typedef RT Type;
};

template<typename RT,
typename A1,
typename A2,
typename ArgSet>

struct RTHelper<RT(*)(A1,A2),ArgSet>
{

typedef RT Type;
};

Listing 15: Partial specializations of the RTHelper class template for pointers-to-functions

These specializations are the last resort for deducing the return type, and ideally would utilize the much-
requested typeof operator. However, since such an operator is not yet standard, instead we have to rely
on either non-standard extensions for particular compilers, or a restricted implementation that relies only
on standard facilities. Each specialization therefore uses the EXPR TYPE typeof-like facility (described in
[5]) to deduce the type of a synthesized function call expression with the appropriate number and types of
arguments (obtained from the ArgSet). This mechanism is thus subject to the shortcomings of the EXPR TYPE
mechanism — namely that each deducible type must be registered explicitly by the user, and void cannot be
deduced. All basic types and some compound types are registered in advance. For the case of functors that
do not provide a result type typedef, and return void, the voidReturn function template is provided.
This wraps the actual functor inside another functor class that ignores the return value of the contained
functor, and instead returns an object of type Void, which is detectable by EXPR TYPE.

Another restriction on deduced return types is that const-qualified reference types cannot be deduced —
the library will assume they are value returns of the referred-to type. This is because const-qualified types
and rvalues of the same type (whether const-qualified or not) are indistinguishable under the type deduction
mechanism, since rvalues can bind to const-qualified references. Reference types that are not const-qualified
are deduced without problems using the RValueLValueType class template extension to the EXPR TYPE
type deduction mechanism (listing 16) — only lvalues can be deduced to be non-const types, so the Type
typedef in this class template is a reference for non-const types, and the original type otherwise.

8 The function call operator with no arguments

Implementing the function call operator with no arguments is marginally harder than implementing the func-
tion call operator with arguments, because it must be a normal member function rather than a member
function template, and the consequence of this is that the declaration must be well-formed, even if the com-
posed functor cannot be called without arguments. To achieve this, the ComposedHelper class template is
partially specialized for empty calling argument sets, to only try and perform type deduction if the bound
argument set doesn’t include any unbound parameters, and to return void otherwise. This specialization uses
the compile-time if facility CT::If along with the MinArgs template to perform this check (listing 18).

It is still an error to actually instantiate operator() with no arguments if there are unbound parameters in
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template<typename T>
struct RValueLValueType
{

typedef T& Type;
};

template<typename T>
struct RValueLValueType<const T>
{

typedef const T Type;
};

template<typename T>
struct RValueLValueType<T&>
{

typedef T& Type;
};

Listing 16: The RValueLValueType class template

template<typename Func,typename ArgSet,typename CAS>
struct ComposedHelper
{

typedef typename TransformArgSetHelper<
ArgSet,
CAS

>::Type TransformedArgSet;

typedef typename CallerHelper<
Func,
TransformedArgSet

>::Type Type;
};

Listing 17: The ComposedHelper primary template

the argument set, so setting the return type to void in such a case causes no errors that wouldn’t otherwise
be present, and enables the functor to compile.

9 Extending compose to handle member functions

compose can be extended to handle member functions without requiring the use of std::mem fun or similar,
by specializing the CallerHelper and RTHelper class templates. Specializing the RTHelper class template
is straightforward, and is along the same lines as specializing it for normal function pointers, as shown in listing
19.

On the other hand, specialization of CallerHelper is a fraction more complicated for precisely the reason it
is necessary — you can’t call a member function the same way you call a normal function, as member functions
need an “object” to apply to. There are two ways of specifying the object; either as a pointer to the object or
as a reference to the object. In addition, we have to deal with const member functions, as well as non-const
ones (and possibly volatile or const volatile member functions, though these are less common). We
resolve this by separating concerns — we specialize CallerHelper for the different varieties of member
function, and delegate the actual call to a separate template (MemFunCallerHelper) to avoid duplication
of the function call code. MemFunCallerHelper depends in turn on the GetObjectHelper class template
to return the object to which to apply the member function; GetObjectHelper is specialized to return a
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template<typename Func,typename ArgSet>
struct ComposedHelper<Func,ArgSet,ArgSet0>
{

typedef typename CT::If<(MinArgs<ArgSet>::result==0),
TransformArgSetHelper<ArgSet,ArgSet0>,
CT::Identity<void> >::Type::Type TransformedArgSet;

typedef typename CT::If<(MinArgs<ArgSet>::result==0),
RTHelper<Func,TransformedArgSet>,
CT::Identity<void> >::Type::Type Type;

};

Listing 18: The specialization of ComposedHelper for empty calling argument sets

template<typename RT,typename Object,
typename A1,
typename A2,
typename ArgSet>

struct RTHelper<RT(Object::*)(A1,A2),ArgSet>
{

typedef RT Type;
};

Listing 19: Specialization of RTHelper for a non-const member function with 2 arguments

reference to the object, even if a pointer is provided. We can identify which is provided by examining the type
of the parameter that is to be bound to the object for the member function — if it is the same as, or a class
publicly derived from, the object type for the member function, then the we have a direct reference to the
object. If, on the other hand, the parameter is not an object of the appropriate type, or a derived class, then
it must be a pointer (or smart pointer/iterator) to the object. As an added complication, references bound
through the use of byRef must also be handled correctly, by removing such wrappers before checking the
type.

To check whether or not the supplied argument is publicly derived from the required object type, we use
a helper class template IsPubliclyDerivedFrom, which strips any references or byRef uses from the
supplied types before checking. The actual check is done in the way advocated by Andrei Alexandrescu in
[1] when he implements the SUPERSUBCLASS macro — check whether a pointer to the supplied type can be
implicitly converted to a pointer to the required type using sizeof and the return types of overloaded helper
functions (as in listing 20).

Specializations of CallerHelper now look like that shown in listing 21.

10 Using operator overloading to create lambda functions

compose can be used with operator overloading to enable the writing of normal expressions involv-
ing operators that result in composed functions. For example, 1+3 can be made equivalent to com-
pose(OpBinPlus(), 1,3), where OpBinPlus is a functor class that returns the sum of its (two) pa-
rameters. This part is relatively simple, as shown in listing 22, though it does require multiple overloads for
the various possibilities:

• Unbound parameter + Value

• Value + Unbound parameter

• Unbound Parameter + Unbound Parameter

• Composed function + Value

12



template<typename T>
struct DerivedHelper
{

typedef char Small;
struct Big
{

Small dummy[2];
};

static Small check(const volatile T* p);
static Big check(...);

};

template<typename T,typename U>
struct IsPubliclyDerivedFrom
{

typedef typename RemoveRef<T>::Type TNoRef;
typedef typename RemoveRef<U>::Type UNoRef;

static const bool result=
sizeof(DerivedHelper<UNoRef>::check(

ExprType::makeT<const volatile TNoRef*>()))
==sizeof(DerivedHelper<UNoRef>::Small);

};

Listing 20: Implementing IsPubliclyDerivedFrom to handle byRef types

• Value + Composed function

• Composed function + Composed function

• Composed function + Unbound parameter

• Unbound parameter + Composed function

There are even more possibilities if you consider that the parameters may also be passed byRef. For ease
of implementation, the supplied code ducks the issue, and relies on argument-dependent lookup to find the
overloaded operators. However, this is not 100% reliable, and may yield the wrong operator under some
circumstances.

Writing the OpBinPlus functor is a fraction harder — the return type of operator() is unknown, in general.
This is where EXPR TYPE is useful — the type of the additive expression can be deduced directly, provided it has

template<typename Object,typename RT,
typename A1,
typename A2,
typename ArgSet,typename CAS>

struct CallerHelper<RT (Object::*)(A1,A2),ArgSet,CAS,3>
{

typedef RT (Object::*Func)(A1,A2);

static RT callFunc(const Func& func,const ArgSet& as,const CAS& cas)
{

return MemFunCallerHelper<RT,Object,Func,ArgSet,CAS,2>::call(func,as,cas);
}

};

Listing 21: One of the specializations of CallerHelper for member functions.
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template<unsigned i,typename U>
ComposedFunc<OpBinPlus,ArgSet2<ParamType<i>,U> > operator+(const ParamType<i>& t,const U& u)
{

return compose(OpBinPlus(),t,u);
}

Listing 22: An example operator+ to enable expressions like 1+someValue

been registered with the EXPR TYPE mechanism. This deduction can then be wrapped in a ResultHelper
member template so it can be used with RTHelper, provided we specialize HasResultHelper (see section
7). This is shown in listing 23.

struct OpBinPlus
{

template<typename T,typename U>
struct ResultHelper
{

typedef typename ExprType::RValueLValueType<
typename EXPR_TYPE((

ExprType::makeT<const T&>() + ExprType::makeT<const U&>()
))>::Type Type;

};

template<typename T,typename U>
typename ResultHelper<T,U>::Type
operator()(const T& t,const U& u) const
{

return t + u;
}

};

template<>
struct HasResultHelper<OpBinPlus>
{

static const bool result=true;
};

Listing 23: Implementation of the OpBinPlus functor.

This technique can then be extended to cover all the overloadable operators, both unary and binary. For
those cases where the return type can be deduced directly from the arguments in a simple fashion (such as
operator* for pointer types), the ResultHelper template can be specialized to do so, rather than use
EXPR TYPE.

11 Operators with special restrictions

Certain operators are required to be class members rather than free functions. This makes supporting them
in a lambda function library that much harder; some expressions (such as x= 1) cannot be supported at all in
their simplest form, and supporting other variations requires modification of several different classes. These
operators are:

• The assignment operators (=, +=, -=, etc.),

• The function call operator,

• The subscript operator, and
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• The class member access operator (->)

Other operators cannot be overridden at all, which makes implementing a lambda function library to support
them as operators impossible — the Lambda Library [2] uses a function if then else return to implement
the conditional operator ?:, for example. The operators that cannot be overloaded are:

• The class member access operators . and .*,

• The scope operator ::,

• The conditional operator ?:,

• The sizeof operator,

• The typeid operator, and

• new and delete expressions

Operators new and delete can be overloaded, but the result is not what would be required to use them in a
lambda expression — the overloaded operators are merely used to allocate memory, not to select the type of
object to construct, or what arguments to pass to its constructors. If allocation and deallocation expressions
are required in a lambda expression, then we must implement factory functions instead.

The built-in logical operators && and || use short-circuit evaluation, whereas user-defined overloads do not.
This means that if we use the “normal” composition mechanism for binary operators with the logical operators,
then the right-hand expression may be unnecessarily evaluated for those cases where the built-in operators
should be used. Therefore we need a special means of permitting, but not requiring, short-circuit evaluation
for the functions that implement the logical operators. This can be achieved by specializing the Caller-
Helper template for these functors to use the appropriate operator directly rather than delegating to the
function-call operator of the functor, as shown in listing 24 for OpBinLogicalAnd (the implementation of
OpBinLogicalAnd is similar to that of OpBinPlus shown in listing 23) — the call to transformArg on
the right-hand side is avoided if the transformed types imply the use of the built-in logical-AND operator and
the left-hand side evaluates to false.

template<typename ArgSet,typename CAS>
struct CallerHelper<OpBinLogicalAnd,ArgSet,CAS,2>
{

typedef typename TransformArgSetHelper<ArgSet,CAS>::Type TransformedArgSet;
typedef typename RTHelper<OpBinLogicalAnd,TransformedArgSet>::Type Type;

static Type callFunc(const OpBinLogicalAnd&,const ArgSet& as,const CAS& cas)
{

typedef GetASEntry<ArgSet,1> Arg1;
typedef GetASEntry<ArgSet,2> Arg2;

return transformArg(Arg1::getVal(as),cas) && transformArg(Arg2::getVal(as),cas);
}

};

Listing 24: Specializing of CallerHelper for OpBinLogicalAnd to allow short-circuit evaluation.

12 Conclusion

I am not attempting to provide a complete lambda-expression library here, as much work towards that has
been done by others — such as Jaako Järvi and Gary Powell with their Lambda Library [2] — so I have not
implemented those operators that are required to be member functions. Nor am I attempting to provide a
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complete functional programming framework — Brian McNamara and Yannis Smaragdakis have done much
work towards such a goal with their FC++ library [3], as have others.

Rather, I have shown how the framework which I have described can be used to easily build complex functors
from others at the point of use, and to build a basic lambda expression facility; I hope that my framework can
be combined with existing libraries to provide a more complete feature set, or used as a basis for extensions
more within the philosophy and structure of those libraries.
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